Senior Data Engineer [UAE Based] (London Area)

AI71
London
1 week ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer [UAE Based] (London Area)

Machine Learning Infrastructure Engineer [UAE Based]

Senior Data Engineer, EMEA

Senior Data Scientist

Snr Data Engineer

Senior Data Engineer

Job Title: Senior Data Engineer

Location: Abu Dhabi



Job Summary:


As aSenior Data Engineer, you will be responsible for designing, developing, and maintaining advanced, scalable data systems that power critical business decisions. You will lead the development of robust data pipelines, ensure data quality and governance, and collaborate across cross-functional teams to deliver high-performance data platforms in production environments. This role requires a deep understanding of modern data engineering practices, real-time processing, and cloud-native solutions.


Key Responsibilities:


Data Pipeline Development & Management:

  • Design, implement, and maintainscalable and reliable data pipelinesto ingest, transform, and load structured, unstructured, and real-time data feeds from diverse sources.
  • Manage data pipelines foranalytics and operational use, ensuring data integrity, timeliness, and accuracy across systems.
  • Implementdata quality tools and validation frameworkswithin transformation pipelines.

Data Processing & Optimization:

  • Build efficient, high-performance systems by leveraging techniques likedata denormalization,partitioning,caching, andparallel processing.
  • Develop stream-processing applications usingApache Kafkaand optimize performance forlarge-scale datasets.
  • Enabledata enrichmentandcorrelationacross primary, secondary, and tertiary sources.

Cloud, Infrastructure, and Platform Engineering:

  • Develop and deploy data workflows onAWS or GCP, using services such as S3, Redshift, Pub/Sub, or BigQuery.
  • Containerize data processing tasks usingDocker, orchestrate withKubernetes, and ensure production-grade deployment.
  • Collaborate with platform teams to ensure scalability, resilience, and observability of data pipelines.

Database Engineering:

  • Write and optimize complexSQL queriesonrelational(Redshift, PostgreSQL) andNoSQL(MongoDB) databases.
  • Work withELK stack(Elasticsearch, Logstash, Kibana) for search, logging, and real-time analytics.
  • SupportLakehouse architecturesand hybrid data storage models for unified access and processing.

Data Governance & Stewardship:

  • Implement robustdata governance,access control, andstewardshippolicies aligned with compliance and security best practices.
  • Establish metadata management, data lineage, and auditability across pipelines and environments.

Machine Learning & Advanced Analytics Enablement:

  • Collaborate with data scientists to prepare and serve features for ML models.
  • Maintain awareness of ML pipeline integration and ensure data readiness for experimentation and deployment.

Documentation & Continuous Improvement:

  • Maintain thorough documentation includingtechnical specifications,data flow diagrams, andoperational procedures.
  • Continuously evaluate and improve the data engineering stack by adopting new technologies and automation strategies.


Required Skills & Qualifications:

  • 8+ yearsof experience in data engineering within a production environment.
  • Advanced knowledge ofPythonandLinux shell scriptingfor data manipulation and automation.
  • Strong expertise inSQL/NoSQL databasessuch as PostgreSQL and MongoDB.
  • Experience buildingstream processing systems using Apache Kafka.
  • Proficiency withDockerandKubernetesin deploying containerized data workflows.
  • Good understanding ofcloud services(AWS or Azure).
  • Hands-on experience withELK stack(Elasticsearch, Logstash, Kibana) for scalable search and logging.
  • Familiarity withAI modelssupporting data management.
  • Experience working withLakehouse systems,data denormalization, anddata labelingpractices.


Preferred Qualifications:

  • Working knowledge ofdata quality tools,lineage tracking, anddata observabilitysolutions.
  • Experience indata correlation, enrichment from external sources, and managingdata integrity at scale.
  • Understanding ofdata governance frameworksand enterprisecompliance protocols.
  • Exposure to CI/CD pipelines for data deployments and infrastructure-as-code.


Education & Experience:

  • Bachelor’s or Master’s degree inComputer Science,Engineering,Data Science, or a related field.
  • Demonstrated success in designing, scaling, and operating data systems incloud-nativeanddistributed environments.
  • Proven ability to work collaboratively with cross-functional teams including product managers, data scientists, and DevOps.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!