Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Infrastructure Engineer [UAE Based]

AI71
London
4 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior MLOps Engineer

Senior Machine Learning Engineer

Machine Learning Engineer

Staff Machine Learning Engineer

Senior Machine Learning Engineer

Job Title: ML Infrastructure Senior Engineer

Location: Abu Dhabi, United Arab Emirates [Full relocation package provided]



Job Overview

We are seeking a skilled ML Infrastructure Engineer to join our growing AI/ML platform team. This role is ideal for someone passionate about large-scale machine learning systems and has hands-on experience deploying LLMs/SLMs using advanced inference engines like vLLM. You will play a critical role in designing, deploying, optimizing, and managing ML models and the infrastructure around them—both for inference, fine-tuning and continued pre-training.


Key Responsibilities

· Deploy large-scale or small language models (LLMs/SLMs) using inference engines (e.g., vLLM, Triton, etc.).

· Collaborate with research and data science teams to fine-tune models or build automated fine-tuning pipelines.

· Extend inference-level capabilities by integrating advanced features such as multi-modality, real-time inferencing, model quantization, and tool-calling.

· Evaluate and recommend optimal hardware configurations (GPU, CPU, RAM) based on model size and workload patterns.

· Build, test, and optimize LLMs Inference for consistent model deployment.

· Implement and maintain infrastructure-as-code to manage scalable, secure, and elastic cloud-based ML environments.

· Ensure seamless orchestration of the MLOps lifecycle, including experiment tracking, model registry, deployment automation, and monitoring.

· Manage ML model lifecycle on AWS (preferred) or other cloud platforms.

· Understand LLM architecture fundamentals to design efficient scalability strategies for both inference and fine-tuning processes.


Required Skills


Core Skills:

· Proven experience deploying LLMs or SLMs using inference engines like vLLM, TGI, or similar.

· Experience in fine-tuning language models or creating automated pipelines for model training and evaluation.

· Deep understanding of LLM architecture fundamentals (e.g., attention mechanisms, transformer layers) and how they influence infrastructure scalability and optimization.

· Strong understanding of hardware-resource alignment for ML inference and training.

Technical Proficiency:

· Programming experience in Python and C/C++, especially for inference optimization.

· Solid understanding of the end-to-end MLOps lifecycle and related tools.

· Experience with containerization, image building, and deployment (e.g., Docker, Kubernetes optional).

Cloud & Infrastructure:

· Hands-on experience with AWS services for ML workloads (SageMaker, EC2, EKS, etc.) or equivalent services in Azure/GCP.

· Ability to manage cloud infrastructure to ensure high availability, scalability, and cost efficiency.


Nice-to-Have

· Experience with ML orchestration platforms like MLflow, SageMaker Pipelines, Kubeflow, or similar.

· Familiarity with model quantization, pruning, or other performance optimization techniques.

· Exposure to distributed training frameworks like Unsloth, DeepSpeed, Accelerate, or FSDP.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Machine Learning Skills in 2025/26

Machine learning (ML) has become one of the most in-demand career paths in technology. From predicting customer behaviour in retail to detecting fraud in banking and enabling medical breakthroughs in healthcare, ML is transforming industries across the UK and beyond. But here’s the truth: employers don’t just want candidates who have read about machine learning in textbooks. They want evidence that you can actually build, train, and deploy models. That means practising with real tools, working with real datasets, and solving real problems. The good news is that you don’t need to pay for expensive software or courses to get started. A wide range of free, open-source tools and platforms allow you to learn machine learning skills hands-on. Whether you’re a beginner or preparing for advanced roles, you can practise everything from simple linear regression to deploying deep learning models — at no cost. In this guide, we’ll explore the best free tools and platforms to practise machine learning skills in 2025, and how to use them effectively to build a portfolio that UK employers will notice.

Top 10 Skills in Machine Learning According to LinkedIn & Indeed Job Postings

Machine learning (ML) is at the forefront of innovation, powering systems in finance, healthcare, retail, logistics, and beyond in the UK. As organisations leverage ML for predictive analytics, automation, and intelligent systems, demand for skilled practitioners continues to grow. So, which skills are most in demand? Drawing on insights from LinkedIn and Indeed, this article outlines the Top 10 machine learning skills UK employers are looking for in 2025. You'll learn how to demonstrate these capabilities through your CV, interviews, and real-world projects.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has become one of the most powerful forces reshaping the modern world. From voice assistants and recommendation engines to fraud detection and medical imaging, it underpins countless applications. ML is no longer confined to research labs—it powers business models, public services, and consumer technologies across the globe. In the UK, demand for machine learning professionals has risen dramatically. Organisations in finance, retail, healthcare, and defence are embedding ML into their operations. Start-ups in Cambridge, London, and Edinburgh are pioneering innovations, while government-backed initiatives aim to position the UK as a global AI leader. Salaries for ML engineers and researchers are among the highest in the tech sector. Yet despite its current importance, machine learning is only at the beginning of its journey. Advances in generative AI, quantum computing, robotics, and ethical governance will reshape the profession. Many of the most vital machine learning jobs of the next two decades don’t exist today. This article explores why new careers will emerge, the roles likely to appear, how today’s roles will evolve, why the UK is well positioned, and how professionals can prepare now.