Machine Learning Infrastructure Engineer [UAE Based]

AI71
London
4 days ago
Create job alert

Job Title: ML Infrastructure Senior Engineer

Location: Abu Dhabi, United Arab Emirates [Full relocation package provided]



Job Overview

We are seeking a skilled ML Infrastructure Engineer to join our growing AI/ML platform team. This role is ideal for someone passionate about large-scale machine learning systems and has hands-on experience deploying LLMs/SLMs using advanced inference engines like vLLM. You will play a critical role in designing, deploying, optimizing, and managing ML models and the infrastructure around them—both for inference, fine-tuning and continued pre-training.


Key Responsibilities

· Deploy large-scale or small language models (LLMs/SLMs) using inference engines (e.g., vLLM, Triton, etc.).

· Collaborate with research and data science teams to fine-tune models or build automated fine-tuning pipelines.

· Extend inference-level capabilities by integrating advanced features such as multi-modality, real-time inferencing, model quantization, and tool-calling.

· Evaluate and recommend optimal hardware configurations (GPU, CPU, RAM) based on model size and workload patterns.

· Build, test, and optimize LLMs Inference for consistent model deployment.

· Implement and maintain infrastructure-as-code to manage scalable, secure, and elastic cloud-based ML environments.

· Ensure seamless orchestration of the MLOps lifecycle, including experiment tracking, model registry, deployment automation, and monitoring.

· Manage ML model lifecycle on AWS (preferred) or other cloud platforms.

· Understand LLM architecture fundamentals to design efficient scalability strategies for both inference and fine-tuning processes.


Required Skills


Core Skills:

· Proven experience deploying LLMs or SLMs using inference engines like vLLM, TGI, or similar.

· Experience in fine-tuning language models or creating automated pipelines for model training and evaluation.

· Deep understanding of LLM architecture fundamentals (e.g., attention mechanisms, transformer layers) and how they influence infrastructure scalability and optimization.

· Strong understanding of hardware-resource alignment for ML inference and training.

Technical Proficiency:

· Programming experience in Python and C/C++, especially for inference optimization.

· Solid understanding of the end-to-end MLOps lifecycle and related tools.

· Experience with containerization, image building, and deployment (e.g., Docker, Kubernetes optional).

Cloud & Infrastructure:

· Hands-on experience with AWS services for ML workloads (SageMaker, EC2, EKS, etc.) or equivalent services in Azure/GCP.

· Ability to manage cloud infrastructure to ensure high availability, scalability, and cost efficiency.


Nice-to-Have

· Experience with ML orchestration platforms like MLflow, SageMaker Pipelines, Kubeflow, or similar.

· Familiarity with model quantization, pruning, or other performance optimization techniques.

· Exposure to distributed training frameworks like Unsloth, DeepSpeed, Accelerate, or FSDP.

Related Jobs

View all jobs

Machine Learning Ops Engineer

▷ 3 Days Left! Machine Learning Engineer (UK)

Staff Software Engineer, MLOps (Remote within UK)

Senior MLops (Full Stack) Engineer | London | Foundation Models

Senior MLops (Full Stack) Engineer | London | Foundation Models

Machine Learning Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.