Sr. Machine Learning Engineer London, UK

Galytix Limited
London
3 months ago
Create job alert

Galytix (GX) is delivering on the promise of AI.

GX has built specialised knowledge AI assistants for the banking and insurance industry. Our assistants are fed by sector-specific data and knowledge and easily adaptable through ontology layers to reflect institution-specific rules.

GX AI assistants are designed for Individual Investors, Credit and Claims professionals. Our assistants are being used right now in global financial institutions. Proven, trusted, non-hallucinating, our assistants are empowering financial professionals and delivering 10x improvements by supporting them in their day-to-day tasks.

As a Sr. Machine Learning Engineer, you will need to:

  • Develop a state of the art data science and ML runtime stack in a multi-cloud environment.
  • Lead on software engineering and software design for ML components.
  • Understand and use computer science fundamentals, including data structures, algorithms, computability and complexity, and computer architecture.
  • Manage the infrastructure and pipelines needed to bring models and code into production.
  • Demonstrate end-to-end understanding of applications (including, but not limited to, the machine learning algorithms) being created.
  • Build algorithms based on statistical modelling procedures and maintain scalable machine learning solutions in production.
  • Apply machine learning algorithms and libraries.
  • Research and implement best practices to improve the existing machine learning infrastructure.
  • Collaborate with data engineers, application programmers, and data scientists.

Desired skills:

  • Qualification in a related field such as computer science, statistics, electrical engineering, mathematics, or physical sciences.
  • Self-starter with excellent communication and time management skills.
  • Strong computer programming skills, with knowledge of Python, R, and Java.
  • Experience scaling machine learning on data and compute grids.
  • Proficiency with Kubernetes, Docker, Linux, and cloud computing.
  • Experience with Dask, Airflow, and MLflow.
  • MLOps, CI, Git, and Agile processes.

Why you do not want to miss this career opportunity?

  • We are a mission-driven firm that is revolutionising the Insurance and Banking industry. We are not aiming to incrementally push the current boundaries; we redefine them.
  • Customer-centric organisation with innovation at the core of everything we do.
  • Capitalize on an unparalleled career progression opportunity.
  • Work closely with senior leaders who have individually served several CEOs in Fortune 100 companies globally.
  • Develop highly valued skills and build connections in the industry by working with top-tier Insurance and Banking clients on their mission-critical problems and deploying solutions integrated into their day-to-day workflows and processes.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer - Agentic AI & Production

Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.