National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Sr. Machine Learning Engineer London, UK

Galytix Limited
London
2 days ago
Applications closed

Related Jobs

View all jobs

Sr. Machine Learning Engineer, Amazon General Intelligence (AGI)

Sr. Machine Learning Engineer

Sr. Data Scientist / Machine Learning Engineer - GenAI & LLM

Sr. Data Scientist / Machine Learning Engineer - GenAI

Sr. Data Scientist / Machine Learning Engineer - GenAI

Senior Data Scientist

Galytix (GX) is delivering on the promise of AI.

GX has built specialised knowledge AI assistants for the banking and insurance industry. Our assistants are fed by sector-specific data and knowledge and easily adaptable through ontology layers to reflect institution-specific rules.

GX AI assistants are designed for Individual Investors, Credit and Claims professionals. Our assistants are being used right now in global financial institutions. Proven, trusted, non-hallucinating, our assistants are empowering financial professionals and delivering 10x improvements by supporting them in their day-to-day tasks.

As a Sr. Machine Learning Engineer, you will need to:

  • Develop a state of the art data science and ML runtime stack in a multi-cloud environment.
  • Lead on software engineering and software design for ML components.
  • Understand and use computer science fundamentals, including data structures, algorithms, computability and complexity, and computer architecture.
  • Manage the infrastructure and pipelines needed to bring models and code into production.
  • Demonstrate end-to-end understanding of applications (including, but not limited to, the machine learning algorithms) being created.
  • Build algorithms based on statistical modelling procedures and maintain scalable machine learning solutions in production.
  • Apply machine learning algorithms and libraries.
  • Research and implement best practices to improve the existing machine learning infrastructure.
  • Collaborate with data engineers, application programmers, and data scientists.

Desired skills:

  • Qualification in a related field such as computer science, statistics, electrical engineering, mathematics, or physical sciences.
  • Self-starter with excellent communication and time management skills.
  • Strong computer programming skills, with knowledge of Python, R, and Java.
  • Experience scaling machine learning on data and compute grids.
  • Proficiency with Kubernetes, Docker, Linux, and cloud computing.
  • Experience with Dask, Airflow, and MLflow.
  • MLOps, CI, Git, and Agile processes.

Why you do not want to miss this career opportunity?

  • We are a mission-driven firm that is revolutionising the Insurance and Banking industry. We are not aiming to incrementally push the current boundaries; we redefine them.
  • Customer-centric organisation with innovation at the core of everything we do.
  • Capitalize on an unparalleled career progression opportunity.
  • Work closely with senior leaders who have individually served several CEOs in Fortune 100 companies globally.
  • Develop highly valued skills and build connections in the industry by working with top-tier Insurance and Banking clients on their mission-critical problems and deploying solutions integrated into their day-to-day workflows and processes.


#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.