National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer, GenRecs, Personalization (Basé à London)

Jobleads
Greater London
3 days ago
Create job alert

The Personalization (PZN) team makes deciding what to play next on Spotify easier and more enjoyable for every listener. We seek to understand the world of music, podcasts and audiobooks better than anyone else so that we can make great recommendations to every individual and keep the world listening. Every day, hundreds of millions of people all over the world use the products we build which include destinations like Home and Search as well as original playlists such as Made For You, Discover Weekly and Daily Mix.

What You'll Do

  • Design, build, evaluate, and ship ML solutions in Spotify’s personalization products
  • Collaborate with cross functional teams spanning user research, design, data science, product management, and engineering to build new product features that advance our mission to connect artists and fans in personalized and useful ways
  • Prototype new approaches and productionize solutions at scale for our hundreds of millions of active users
  • Promote and role-model best practices of ML systems development, testing, evaluation, etc., both inside the team as well as throughout the organization
  • Be part of an active group of machine learning practitioners

Who You Are

  • An experienced ML practitioner motivated to work on complex real-world problems in a fast-paced and collaborative environment
  • Strong background in machine learning, natural language processing, and generative AI, with experience in applying theory to develop real-world applications
  • Hands-on expertise with implementing end-to-end production ML systems at scale in Python, Java or Scala
  • Experience with Pytorch and/or TensorFlow is a strong plusExperience with designing end-to-end tech specs and modular architectures for ML frameworks in complex problem spaces in collaboration with product teams
  • Experience with large scale, distributed data processing frameworks/tools like Apache Beam, Apache Spark, and cloud platforms like GCP or AWS

Where You'll Be

  • We offer you the flexibility to work where you work best! For this role, you can be within the European region as long as we havea work location.
  • This team operates within the GMT/CET time zone for collaboration.
  • Excluding France due to on-call restrictions.

Spotify is an equal opportunity employer. You are welcome at Spotify for who you are, no matter where you come from, what you look like, or what’s playing in your headphones. Our platform is for everyone, and so is our workplace. The more voices we have represented and amplified in our business, the more we will all thrive, contribute, and be forward-thinking! So bring us your personal experience, your perspectives, and your background. It’s in our differences that we will find the power to keep revolutionizing the way the world listens.

At Spotify, we are passionate about inclusivity and making sure our entire recruitment process is accessible to everyone. We have ways to request reasonable accommodations during the interview process and help assist in what you need. If you need accommodations at any stage of the application or interview process, please let us know - we’re here to support you in any way we can.

Spotify transformed music listening forever when we launched in 2008. Our mission is to unlock the potential of human creativity by giving a million creative artists the opportunity to live off their art and billions of fans the chance to enjoy and be passionate about these creators. Everything we do is driven by our love for music and podcasting. Today, we are the world’s most popular audio streaming subscription service.


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer, GenRecs, Personalization

Machine Learning Engineer, GenRecs, Personalization (Basé à London)

Machine Learning Engineer

Machine Learning/AI Engineer

Machine Learning Engineer

Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.