Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

4 min read

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI.

Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Contents

  • Understanding Redundancy in Machine Learning

  • Step 1: Reset Your Mindset and Reflect on Direction

  • Step 2: Define Your ML Specialisms and Tools

  • Step 3: Rebuild Your CV and Model Portfolio

  • Step 4: Optimise Your LinkedIn, GitHub and Project Visibility

  • Step 5: Message Recruiters and Reconnect with Hiring Managers

  • Step 6: Apply Selectively and Follow Up

  • Step 7: Upskill in High-Impact ML Technologies

  • Step 8: Explore Contract, Freelance or Research Roles

  • Step 9: Balance Job Hunting with Self-Care

  • Bonus: Top UK Employers Hiring for ML Roles in 2025

  • Final Thoughts: Redundancy as a Machine Learning Reset

Understanding Redundancy in Machine Learning

ML redundancies can result from AI budget cuts, restructuring, or shifting priorities (e.g. moving from R&D to product delivery). This isn’t a reflection of your talent—just timing.

ML skills are still highly valued, especially in:

  • Predictive modelling and optimisation

  • Deep learning (vision, NLP)

  • Generative AI (LLMs, transformers)

  • Recommendation systems

  • MLOps, deployment and monitoring

  • Real-time inference and embedded ML

Step 1: Reset Your Mindset and Reflect on Direction

Take time to pause and reflect:

  • What did you enjoy most in your last role: research, experimentation, deployment, stakeholder interaction?

  • Do you want to work in a start-up, scale-up, or established enterprise?

  • Are you most motivated by impact, innovation, learning or stability?

This insight helps guide your next move.

Step 2: Define Your ML Specialisms and Tools

Clarify your core strengths:

  • Do you focus on classical ML, deep learning, time-series forecasting, NLP, or reinforcement learning?

  • What tools are in your stack? (e.g. Python, TensorFlow, PyTorch, Scikit-learn, MLflow, Weights & Biases, Docker, SageMaker)

  • Are you familiar with MLOps workflows (CI/CD, model monitoring, cloud deployment)?

Step 3: Rebuild Your CV and Model Portfolio

Your CV should:

  • Start with a focused headline and profile summary (e.g. “Machine Learning Engineer | NLP | PyTorch | MLOps”)

  • Use bullet points to showcase real impact (e.g. “Improved F1 score by 22% through model re-architecture”)

  • List datasets, modelling approaches, evaluation metrics, and tools used

  • Include a link to your GitHub, portfolio site, or Hugging Face profile

Step 4: Optimise Your LinkedIn, GitHub and Project Visibility

LinkedIn Tips:

  • Headline: “Machine Learning Engineer | Deep Learning | Open to Work”

  • About: Briefly highlight projects, strengths, and values

  • Add certifications, project write-ups, or talks

GitHub Tips:

  • Keep repos tidy, well-documented, and reproducible

  • Include projects like end-to-end ML pipelines, model evaluation dashboards, or fine-tuned transformers

  • Add notebooks, README summaries, and links to live demos

Sample LinkedIn About Section:

Machine Learning Engineer | NLP & MLOps | Open to Work

I’m a technically curious ML engineer with 4+ years of experience building and deploying machine learning models. After a recent redundancy due to budget cuts, I’m seeking a new role where I can drive real-world impact with scalable AI solutions.

Tech stack: Python, PyTorch, MLflow, FastAPI, Hugging Face, Docker, GCP, GitHub Actions

Let’s connect if you’re hiring or collaborating on applied ML.

Step 5: Message Recruiters and Reconnect with Hiring Managers

Recruiter Message Example:

Subject: Machine Learning Engineer | NLP | Available Immediately

Hi [Recruiter’s Name],

I’m seeking new ML roles following a redundancy and have 4+ years' experience in NLP, transformer models, and model deployment. I’ve attached my CV and GitHub—would love to hear about any relevant openings you’re working on.

Best,[Your Name][LinkedIn][GitHub][CV attachment]

Hiring Manager Follow-Up Example:

Subject: Application – ML Engineer Role at [Company Name]

Dear [Hiring Manager],

I recently applied for the Machine Learning Engineer role at your company and wanted to express my strong interest. I bring hands-on experience fine-tuning LLMs and deploying scalable models via API endpoints. Following a recent layoff, I’m available immediately and excited to contribute.

CV attached—happy to discuss further.

Kind regards,[Your Name]

Step 6: Apply Selectively and Follow Up

Avoid mass applications:

  • Prioritise jobs that match your domain and tech stack

  • Tailor CVs and cover letters with keywords from job specs

  • Keep a tracker (company, role, date, follow-up date)

  • Revisit jobs and follow up after 7–10 days

Step 7: Upskill in High-Impact ML Technologies

Redundancy is a great time to deepen or diversify:

  • Learn about generative models (transformers, diffusion models)

  • Explore deployment and monitoring tools (e.g. BentoML, EvidentlyAI)

  • Earn certifications (Google ML Engineer, Databricks, DeepLearning.AI)

  • Join open-source projects or contribute to Hugging Face spaces

Step 8: Explore Contract, Freelance or Research Roles

Consider:

  • Freelance projects via Toptal, Braintrust, or Upwork

  • ML consultant or contractor roles

  • Research collaborations with universities or think tanks

  • Contributing to or launching open-source AI tools

Step 9: Balance Job Hunting with Self-Care

Redundancy can trigger burnout or anxiety. Stay on track by:

  • Creating a structured weekly schedule

  • Applying for redundancy pay or Universal Credit

  • Talking to peers, mentors or industry Slack groups

  • Keeping active and taking tech breaks

Bonus: Top UK Employers Hiring for ML Roles in 2025

  1. DeepMind (London)

  2. Faculty AI

  3. Babylon Health

  4. Deliveroo

  5. Ocado Technology

  6. Spotify UK

  7. BBC R&D

  8. NHS England (AI & ML teams)

  9. AstraZeneca

  10. Monzo & Starling Bank

  11. GSK AI Labs

  12. The Alan Turing Institute

  13. Stability AI

  14. Arm

  15. Improbable

Final Thoughts: Redundancy as a Machine Learning Reset

Redundancy can offer unexpected clarity. Use this time to refine your goals, improve your visibility, and reposition your career.

You’re not starting from scratch—you’re re-entering with deeper insight and resilience.

Need Help?

  • Browse ML jobs by location, tech stack or seniority

  • Access CV and GitHub profile templates

  • Get weekly job alerts

  • Follow us on LinkedIn for UK ML hiring insights

Visit: www.machinelearningjobs.co.uk

Related Jobs

Machine Learning Quant Engineer - Investment banking/ XVA

Senior Quant Machine Learning Engineer sought by leading investment bank based in the city of London. Inside IR35, 4 days a week on site The role: To lead the design and deployment of ML-driven models across our trading and investment platforms. This is a high-impact, front-office role offering direct collaboration with traders, quant researchers, and technologists at the forefront of...

Harvey Nash
London

Machine Learning Engineer

Machine Learning Engineer is sought by a high growth B2B scale up based in Birmingham city centre. With data-driven creativity at its core their platform uses machine learning to turn business insights into business success. As a Machine Learning Engineer, you'll sit at the intersection of data science, engineering, and commercial strategy, working closely with our product and core engineering...

SF Recruitment
Birmingham

Machine Learning Engineer (Databricks)

Machine Learning Engineer (Databricks) - £60 - £70k Edinburgh Hybrid - 2 days onsite I’m on the lookout for an MLOps Engineer who can truly bridge the gap between Data Engineering and Data Science. This role is all about leveraging Databricks and Python to design, build, and scale data models that drive genuine business impact. You’ll be joining a scaling...

Bright Purple
Roxburgh's Court

Machine Learning Engineer

Machine Learning Engineer | London (Hybrid) | £70,000 - £80,000 We are looking for a Machine Learning Engineer to join our London-based client, to deliver end-to-end solutions on exciting new projects which have come about due to growth. You’ll be designing, building and deploying machine learning models which solve complex business challenges, working closely with cross-functional teams at all stages,...

Peaple Talent
City of London

Machine Learning Engineer

Role: Machine Learning Engineer London: Central London - hybrid working Salary: £125,000 + bonus + benefits Industry: Technology Scale Up, circa 300 people The role: You will lead the design & development of robust Machine Learning models to solve complex problems. You will work alongside MLOps to help build the ML infrastructure for these models to be deployed, and then...

Arcus Search
City of London

Machine Learning Engineer

Machine Learning Engineer - 1 Month Initial Contract 📍 Location: Hybrid 1-2 days per week onsite in London 📅 Start: 24th November - 1 month initially but strong chance of extension 💰 Day Rate: Outside IR35 - rate depending on experience. An established consultancy is seeking a Machine Learning Engineer (Contract) to support a global education organisation on an ongoing...

Omnis Partners
London

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Hiring?
Discover world class talent.