Shape the Future of AIJoin one of the UK's fastest-growing companies and become a Professional Development Expert in Artificial Intelligence.

View Roles

Machine Learning Operations Engineer

Yarnton
3 weeks ago
Create job alert

ML Ops Engineer – Motion Capture Technology | Hybrid (Oxford, UK)

An exciting opportunity has arisen for an ML Ops Engineer to join a world-leading technology company specialising in high-performance motion capture solutions for the entertainment, engineering, and life sciences industries. Their products are widely used in feature films, gaming, commercials, and cutting-edge research in biomechanics, robotics, and beyond.

You’ll be part of a collaborative R&D team that’s pushing the boundaries of motion capture technology, working in a company with a strong track record of innovation and global impact.

The Role:

You will join the ML Operations team, supporting the development of next-generation motion capture products. The role involves provisioning and maintaining a modern ML Ops stack, which includes data acquisition pipelines, data management systems, and ML model training infrastructure. This stack combines self-managed on-premises systems with cloud-based AWS resources.

As an ML Ops Engineer, you’ll have the opportunity to influence technical direction, propose new solutions, and potentially lead projects within the team.

The company offers a hybrid working model, with a head office in a major academic city. There is no on-call expectation outside of core office hours.

Key Responsibilities:

Manage and maintain on-premise Kubernetes clusters

Implement and maintain ML Ops pipelines using Kubeflow and similar tools (e.g., MLflow)

Develop scripts and tooling in Python; manage Linux system configurations

Leverage AWS infrastructure (Cognito, S3, EC2, Lambda, etc.)

Integrate ML toolkits (e.g., PyTorch, Lightning) into ML Ops workflows

Design and deploy robust ML Ops solutions across various technologies

Contribute to the technical strategy and suggest improvements to the ML Ops stack

Required Skills and Experience:

Solid experience managing on-premise Kubernetes clusters

Strong knowledge of Kubeflow or similar ML Ops platforms

Proficiency in Python programming, Linux systems, and scripting

Experience with AWS services (Cognito, S3, EC2, Lambda, etc.)

Familiarity with ML frameworks such as PyTorch or Lightning, and understanding their role in ML Ops pipelines

Ability to design and implement comprehensive ML Ops solutions

Desirable Skills:

Background in DevOps with CI/CD experience (e.g., Jenkins)

Knowledge of infrastructure-as-code tools (e.g., Ansible)

Interest in human motion capture, sports, or animation technologies

Familiarity with C++

Benefits Package:

Competitive salary

10% company pension contribution

25 days annual leave + bank holidays

Life cover

Private medical insurance with optical/dental coverage

Permanent health insurance

Cycle to work scheme

Free on-site parking

If you’re passionate about ML Ops and looking to work on pioneering technology in a growing, innovative environment, we’d love to hear from you.

Apply now to be part of a team shaping the future of motion capture technology

Related Jobs

View all jobs

Machine Learning Operations Engineer

Machine Learning Engineer

Machine Learning Engineer

Senior Machine Learning Operations Engineer

Senior Machine Learning Operations Engineer

Principal Machine Learning Operations Developer for AI Research

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Automate Your Machine Learning Jobs Search: Using ChatGPT, RSS & Alerts to Save Hours Each Week

ML jobs are everywhere—product companies, labs, consultancies, fintech, healthtech, robotics—often hidden in ATS portals or duplicated across boards. The fastest way to stay on top of them isn’t more scrolling; it’s automation. With keyword-rich alerts, RSS feeds, and a reusable ChatGPT workflow, you can bring relevant roles to you, triage them in minutes, and tailor strong applications without burning your evenings. This is a copy-paste playbook for www.machinelearningjobs.co.uk readers. It’s UK-centric, practical, and designed to save you hours each week. What You’ll Have Working In 30 Minutes A role & keyword map spanning LLM/NLP, Vision, Core ML, Recommenders, MLOps/Platform, Research/Applied Science, and Edge/Inference optimisation. Shareable Boolean searches you can paste into Google & job boards to cut noise. Always-on alerts & RSS feeds delivering fresh roles to your inbox/reader. A ChatGPT “ML Job Scout” prompt that deduplicates, scores fit, and outputs tailored actions. A lightweight pipeline tracker so deadlines and follow-ups never slip.

10 Machine‑Learning Recruitment Agencies in the UK You Should Know (2025 Job‑Seeker Guide)

With deep‑learning projects now integral across healthcare, finance and tech, UK demand for machine‑learning talent is booming. Lightcast shows +50 % YoY growth in UK adverts referencing “machine learning,” “deep learning,” “computer vision” or “reinforcement learning” in Q1 2025. Monthly vacancies sit around 1,800–2,100, but certified ML specialists number fewer than 15,000. Specialist recruiters help candidates access hidden roles, competitive packages, and structured interview prep. How we screened: Only UK‑registered agencies with clear ML/AI or Data practices Agencies that posted ≥ 5 UK ML roles between March and June 2025

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.