National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Operations Engineer

Yarnton
2 days ago
Create job alert

ML Ops Engineer – Motion Capture Technology | Hybrid (Oxford, UK)

An exciting opportunity has arisen for an ML Ops Engineer to join a world-leading technology company specialising in high-performance motion capture solutions for the entertainment, engineering, and life sciences industries. Their products are widely used in feature films, gaming, commercials, and cutting-edge research in biomechanics, robotics, and beyond.

You’ll be part of a collaborative R&D team that’s pushing the boundaries of motion capture technology, working in a company with a strong track record of innovation and global impact.

The Role:

You will join the ML Operations team, supporting the development of next-generation motion capture products. The role involves provisioning and maintaining a modern ML Ops stack, which includes data acquisition pipelines, data management systems, and ML model training infrastructure. This stack combines self-managed on-premises systems with cloud-based AWS resources.

As an ML Ops Engineer, you’ll have the opportunity to influence technical direction, propose new solutions, and potentially lead projects within the team.

The company offers a hybrid working model, with a head office in a major academic city. There is no on-call expectation outside of core office hours.

Key Responsibilities:

Manage and maintain on-premise Kubernetes clusters

Implement and maintain ML Ops pipelines using Kubeflow and similar tools (e.g., MLflow)

Develop scripts and tooling in Python; manage Linux system configurations

Leverage AWS infrastructure (Cognito, S3, EC2, Lambda, etc.)

Integrate ML toolkits (e.g., PyTorch, Lightning) into ML Ops workflows

Design and deploy robust ML Ops solutions across various technologies

Contribute to the technical strategy and suggest improvements to the ML Ops stack

Required Skills and Experience:

Solid experience managing on-premise Kubernetes clusters

Strong knowledge of Kubeflow or similar ML Ops platforms

Proficiency in Python programming, Linux systems, and scripting

Experience with AWS services (Cognito, S3, EC2, Lambda, etc.)

Familiarity with ML frameworks such as PyTorch or Lightning, and understanding their role in ML Ops pipelines

Ability to design and implement comprehensive ML Ops solutions

Desirable Skills:

Background in DevOps with CI/CD experience (e.g., Jenkins)

Knowledge of infrastructure-as-code tools (e.g., Ansible)

Interest in human motion capture, sports, or animation technologies

Familiarity with C++

Benefits Package:

Competitive salary

10% company pension contribution

25 days annual leave + bank holidays

Life cover

Private medical insurance with optical/dental coverage

Permanent health insurance

Cycle to work scheme

Free on-site parking

If you’re passionate about ML Ops and looking to work on pioneering technology in a growing, innovative environment, we’d love to hear from you.

Apply now to be part of a team shaping the future of motion capture technology

Related Jobs

View all jobs

Machine Learning Operations Engineer

Senior Machine Learning Operations Engineer

Senior Machine Learning Operations Engineer

Senior Machine Learning Operations Engineer

Senior Machine Learning Operations Engineer

Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.