National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Developer / Engineer

Jane Street
London
4 days ago
Create job alert

We are looking for an engineer with experience in low-level systems programming and optimisation to join our growing ML team. Machine learning is a critical pillar of Jane Street's global business. Our ever-evolving trading environment serves as a unique, rapid-feedback platform for ML experimentation, allowing us to incorporate new ideas with relatively little friction. Your part here is optimising the performance of our models – both training and inference. We care about efficient large-scale training, low-latency inference in real-time systems and high-throughput inference in research. Part of this is improving straightforward CUDA, but the interesting part needs a whole-systems approach, including storage systems, networking and host- and GPU-level considerations. There’s no fixed set of skills, but here are some of the things we’re looking for: An understanding of modern ML techniques and toolsets The experience and systems knowledge required to debug a training run’s performance end to end Background in Infiniband, RoCE, GPUDirect, PXN, rail optimisation and NVLink, and how to use these networking technologies to link up GPU clusters An understanding of the collective algorithms supporting distributed GPU training in NCCL or MPI Are you currently a student? * Major/Field of study Year you expect to begin full time employment #

Related Jobs

View all jobs

Machine Learning Developer / Engineer

Machine Learning Developer / Engineer

Machine Learning Developer / Engineer

Machine Learning Developer / Engineer

Machine Learning Developer / Engineer

Machine Learning Developer / Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.