Data Platform Engineer

Zimmer Biomet
Sheffield
5 days ago
Create job alert

JOB DESCRIPTION

At Zimmer Biomet, we believe in pushing the boundaries of innovation and driving our mission forward. As a global medical technology leader for nearly 100 years, a patient’s mobility is enhanced by a Zimmer Biomet product or technology every 8 seconds.

As a Zimmer Biomet team member, you will share in our commitment to providing mobility and renewed life to people around the world. To support our talent team, we focus on development opportunities, robust employee resource groups (ERGs), a flexible working environment, location specific competitive total rewards, wellness incentives and a culture of recognition and performance awards. We are committed to creating an environment where every team member feels included, respected, empowered, and recognized.


What You Can Expect


The Senior Data Platform Engineer will be responsible for the development of data platforms which serve the needs of our development teams and data products that improve the quality-of-care and quality-of-life of Orthopaedic patients worldwide. The Connected Health AI and Data Science Team’s existing platform is evolving from batch processing to cater for real-time and Generative AI solutions, the Data Platform Engineer will play a critical role in driving the growth and adoption of this platform.
 

How You'll Create Impact

Work closely with machine learning scientists and engineers to develop data serving platforms and platforms that power products on Microsoft Azure that process both real-time and batch data from diverse sources; Integration of third-party platforms and software to build a platform for the efficient onboarding and manipulation of data; Continuously identify areas for system improvements, focussing on enhacing both backend efficiency and user experience; Develop re-usable architectures and infrastructure via Infrastructure as Code for use in current and future products; Fulfilling regulatory commitments through the use of automation; Contribute to the shaping of the technological roadmap to help progress the Connected Health team;
 

What Makes You Stand Out

Proficiency in the following tools:

Python for developing data pipelines; Apache Spark for the ingestion and transformation of data; SQL databases; Data stores such as Azure Blob Storage, Azure Data Lake, S3, Azure Cosmos DB; Infrastructure as code tooling such as Terraform, Pulumi, Bicep; Git and CI/CD pipeline tooling;

Your Background

Experience/competency in the following areas:

Strong communication skills as this position works as part of a cross-disciplinary product team; Programming with Python and packages associated with the data engineering workflow; Awareness of machine learning techniques and their applications; Apache Spark and Apache Airflow for ETL pipelines; Developing applications to run on the cloud in a cloud-native way; Data pipeline, application and infrastructure monitoring with tools such as NewRelic; Familiarity with infrastructure concepts such as virtual machines and networking; Communicating analyses, technical ideas, and their value to a range of audiences; Ability to learn new technologies and methodologies;

Some experience in one of the following areas is beneficial, but not essential: 

Data quality monitoring Working with healthcare data; Working with and deploying applications to Kubernetes, Managed Container Environments; Working with Azure data tools such as Synapse or Fabric; Delivering software and/or artificial intelligence/machine learning in regulated spaces;

Travel Expectations


This role is home-based and the team embraces a culture of remote-first. The team regularly meets once every fortnight in Central London, but individuals can decide in-conjunction with the rest of their team whether to meet others in the team more or less regularly depending on their circumstances.

This role works closely with team members based in the U.S. therefore, occasional evening meetings will be required. There also may be occasional travel to the U.S. for internal meetings, and also travel in UK/Europe to meet with customers.
 


EOE/M/F/Vet/Disability

Related Jobs

View all jobs

Data Platform Engineer

Data Platform Engineer

Data Platform Engineer

Data Platform Engineer

Senior Data Scientist (MLOps)

Senior Data Scientist (MLOps)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.