Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Platform Engineer

Zimmer Biomet
Birmingham
6 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer, Data Platform

Data Engineer, Data Platform

Senior Data Engineer, Data Platform - Macquarie Group

Senior Data Engineer

Data Engineering Manager London

Data Engineering Manager

JOB DESCRIPTION

At Zimmer Biomet, we believe in pushing the boundaries of innovation and driving our mission forward. As a global medical technology leader for nearly 100 years, a patient’s mobility is enhanced by a Zimmer Biomet product or technology every 8 seconds.

As a Zimmer Biomet team member, you will share in our commitment to providing mobility and renewed life to people around the world. To support our talent team, we focus on development opportunities, robust employee resource groups (ERGs), a flexible working environment, location specific competitive total rewards, wellness incentives and a culture of recognition and performance awards. We are committed to creating an environment where every team member feels included, respected, empowered, and recognized.


What You Can Expect


The Senior Data Platform Engineer will be responsible for the development of data platforms which serve the needs of our development teams and data products that improve the quality-of-care and quality-of-life of Orthopaedic patients worldwide. The Connected Health AI and Data Science Team’s existing platform is evolving from batch processing to cater for real-time and Generative AI solutions, the Data Platform Engineer will play a critical role in driving the growth and adoption of this platform.
 

How You'll Create Impact

Work closely with machine learning scientists and engineers to develop data serving platforms and platforms that power products on Microsoft Azure that process both real-time and batch data from diverse sources; Integration of third-party platforms and software to build a platform for the efficient onboarding and manipulation of data; Continuously identify areas for system improvements, focussing on enhacing both backend efficiency and user experience; Develop re-usable architectures and infrastructure via Infrastructure as Code for use in current and future products; Fulfilling regulatory commitments through the use of automation; Contribute to the shaping of the technological roadmap to help progress the Connected Health team;
 

What Makes You Stand Out

Proficiency in the following tools:

Python for developing data pipelines; Apache Spark for the ingestion and transformation of data; SQL databases; Data stores such as Azure Blob Storage, Azure Data Lake, S3, Azure Cosmos DB; Infrastructure as code tooling such as Terraform, Pulumi, Bicep; Git and CI/CD pipeline tooling;

Your Background

Experience/competency in the following areas:

Strong communication skills as this position works as part of a cross-disciplinary product team; Programming with Python and packages associated with the data engineering workflow; Awareness of machine learning techniques and their applications; Apache Spark and Apache Airflow for ETL pipelines; Developing applications to run on the cloud in a cloud-native way; Data pipeline, application and infrastructure monitoring with tools such as NewRelic; Familiarity with infrastructure concepts such as virtual machines and networking; Communicating analyses, technical ideas, and their value to a range of audiences; Ability to learn new technologies and methodologies;

Some experience in one of the following areas is beneficial, but not essential: 

Data quality monitoring Working with healthcare data; Working with and deploying applications to Kubernetes, Managed Container Environments; Working with Azure data tools such as Synapse or Fabric; Delivering software and/or artificial intelligence/machine learning in regulated spaces;

Travel Expectations


This role is home-based and the team embraces a culture of remote-first. The team regularly meets once every fortnight in Central London, but individuals can decide in-conjunction with the rest of their team whether to meet others in the team more or less regularly depending on their circumstances.

This role works closely with team members based in the U.S. therefore, occasional evening meetings will be required. There also may be occasional travel to the U.S. for internal meetings, and also travel in UK/Europe to meet with customers.
 


EOE/M/F/Vet/Disability

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.