Data Platform Engineer

Zimmer Biomet
Reading
1 month ago
Applications closed

Related Jobs

View all jobs

Cloud Platform Engineer, Data Engineering

Bright Data Engineer Needed | London | SaaS | 1st Class STEM Degree

Bright Junior Data Engineers x 2 | London | SaaS Data Platform

Data Engineering Lead

Data Engineer - Trading Systems - Quant Fund

Senior Data Engineer - MS Fabric - Remote - £70k - £75k

JOB DESCRIPTION

At Zimmer Biomet, we believe in pushing the boundaries of innovation and driving our mission forward. As a global medical technology leader for nearly 100 years, a patient’s mobility is enhanced by a Zimmer Biomet product or technology every 8 seconds.

As a Zimmer Biomet team member, you will share in our commitment to providing mobility and renewed life to people around the world. To support our talent team, we focus on development opportunities, robust employee resource groups (ERGs), a flexible working environment, location specific competitive total rewards, wellness incentives and a culture of recognition and performance awards. We are committed to creating an environment where every team member feels included, respected, empowered, and recognized.


What You Can Expect


The Senior Data Platform Engineer will be responsible for the development of data platforms which serve the needs of our development teams and data products that improve the quality-of-care and quality-of-life of Orthopaedic patients worldwide. The Connected Health AI and Data Science Team’s existing platform is evolving from batch processing to cater for real-time and Generative AI solutions, the Data Platform Engineer will play a critical role in driving the growth and adoption of this platform.
 

How You'll Create Impact

Work closely with machine learning scientists and engineers to develop data serving platforms and platforms that power products on Microsoft Azure that process both real-time and batch data from diverse sources; Integration of third-party platforms and software to build a platform for the efficient onboarding and manipulation of data; Continuously identify areas for system improvements, focussing on enhacing both backend efficiency and user experience; Develop re-usable architectures and infrastructure via Infrastructure as Code for use in current and future products; Fulfilling regulatory commitments through the use of automation; Contribute to the shaping of the technological roadmap to help progress the Connected Health team;
 

What Makes You Stand Out

Proficiency in the following tools:

Python for developing data pipelines; Apache Spark for the ingestion and transformation of data; SQL databases; Data stores such as Azure Blob Storage, Azure Data Lake, S3, Azure Cosmos DB; Infrastructure as code tooling such as Terraform, Pulumi, Bicep; Git and CI/CD pipeline tooling;

Your Background

Experience/competency in the following areas:

Strong communication skills as this position works as part of a cross-disciplinary product team; Programming with Python and packages associated with the data engineering workflow; Awareness of machine learning techniques and their applications; Apache Spark and Apache Airflow for ETL pipelines; Developing applications to run on the cloud in a cloud-native way; Data pipeline, application and infrastructure monitoring with tools such as NewRelic; Familiarity with infrastructure concepts such as virtual machines and networking; Communicating analyses, technical ideas, and their value to a range of audiences; Ability to learn new technologies and methodologies;

Some experience in one of the following areas is beneficial, but not essential: 

Data quality monitoring Working with healthcare data; Working with and deploying applications to Kubernetes, Managed Container Environments; Working with Azure data tools such as Synapse or Fabric; Delivering software and/or artificial intelligence/machine learning in regulated spaces;

Travel Expectations


This role is home-based and the team embraces a culture of remote-first. The team regularly meets once every fortnight in Central London, but individuals can decide in-conjunction with the rest of their team whether to meet others in the team more or less regularly depending on their circumstances.

This role works closely with team members based in the U.S. therefore, occasional evening meetings will be required. There also may be occasional travel to the U.S. for internal meetings, and also travel in UK/Europe to meet with customers.
 


EOE/M/F/Vet/Disability

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.