Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Cloud Platform Engineer, Data Engineering

bet365
Stoke-on-Trent
5 months ago
Applications closed

Related Jobs

View all jobs

Google Cloud Platform Data Engineer

Google Cloud Platform Data Engineer

Senior Data Engineer, Data Platform

Senior Data Engineer, Data Platform

Data Engineer - Revenue Platform

Data Engineer Revenue Platform

Who we are looking for

A Cloud Platform Engineer, who will be embedded within the teams responsible for the delivery and operation of cloud services within Data Engineering.


The next stage of our initiative is to expand our public cloud capability and establish a seamless operating model. The aim is to leverage the speed of delivery and flexibility of the self-serve model, whilst maintaining a strong relationship with the core platform team.


We are embedding Cloud Platform Engineers within the Data Engineering team to help build, operate and support critical cloud products.


We’re looking for someone who has a passion for working on innovative initiatives and will make an immediate impact to the Business by bringing their own experience to a challenging but vibrant environment. You will be given the support and training to allow you to grow and progress within this position.


This role suits those with a development background transitioning to cloud technologies or cloud engineers who want to work closely with development teams.


This role is eligible for inclusion in the Company’s hybrid working from home policy.


Preferred Skills, Qualifications and Experience

  • Prior public cloud experience, preferably with Google Cloud.
  • Strong core platform knowledge in Projects and Folders, IAM and Billing.
  • Proficiency operating with Infrastructure as Code (IaC) using industry standard tooling, preferably Terraform and methodologies.
  • Knowledge of GitOps and preferably experience of use.
  • Proficiency of source code management; namely Git.
  • Confident in utilising custom automation and scripting using tools such as G-Cloud, CLI, Bash, Python and Golang.
  • Experience of modern platform stacks such as Kubernetes or GKE, as well as affiliated technologies and workflows including service mesh/ingress, CI/CD, monitoring stacks and security instruments.
  • Experience of using and managing Docker images.
  • Awareness of networking in Public Cloud environments.
  • Awareness of key security considerations when operating in the public cloud.


Main Responsibilities

  • Working as an embedded Cloud Platform Engineer within a software function to deploy, operate and support related cloud resources.
  • Taking accountability for the end-to-end delivery of cloud resources as part of software product initiatives.
  • Working with and influencing others to advocate and guide technical aspects of cloud adoption.
  • Working with the central Cloud Platform Team to embed key principles and standards in the operational running of responsible technologies.
  • Supporting and consulting with stakeholders.
  • Driving engineering excellence across your team by fostering modern engineering practices and processes.
  • Working with the central Cloud Platform Team to help steer the next iteration of self-serve automation technologies.


By applying to us you are agreeing to share your Personal Data in accordance with our Recruitment Privacy Policy - https://www.bet365careers.com/en/privacy-policy.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.