Cloud Platform Engineer, Data Engineering

bet365
Stoke-on-Trent
7 months ago
Applications closed

Related Jobs

View all jobs

Senior Platform Engineer - AI MLOps Oxford, England, United Kingdom

Data Engineer — Cloud Platform Lead (Hybrid,Car Allowance)

Hybrid Data Engineer: Cloud Platform & AI

Data Engineer

Senior Scientific Data Engineer, Data Platform

Cloud Data Engineer: GCP & Big Data Analytics

Who we are looking for

A Cloud Platform Engineer, who will be embedded within the teams responsible for the delivery and operation of cloud services within Data Engineering.


The next stage of our initiative is to expand our public cloud capability and establish a seamless operating model. The aim is to leverage the speed of delivery and flexibility of the self-serve model, whilst maintaining a strong relationship with the core platform team.


We are embedding Cloud Platform Engineers within the Data Engineering team to help build, operate and support critical cloud products.


We’re looking for someone who has a passion for working on innovative initiatives and will make an immediate impact to the Business by bringing their own experience to a challenging but vibrant environment. You will be given the support and training to allow you to grow and progress within this position.


This role suits those with a development background transitioning to cloud technologies or cloud engineers who want to work closely with development teams.


This role is eligible for inclusion in the Company’s hybrid working from home policy.


Preferred Skills, Qualifications and Experience

  • Prior public cloud experience, preferably with Google Cloud.
  • Strong core platform knowledge in Projects and Folders, IAM and Billing.
  • Proficiency operating with Infrastructure as Code (IaC) using industry standard tooling, preferably Terraform and methodologies.
  • Knowledge of GitOps and preferably experience of use.
  • Proficiency of source code management; namely Git.
  • Confident in utilising custom automation and scripting using tools such as G-Cloud, CLI, Bash, Python and Golang.
  • Experience of modern platform stacks such as Kubernetes or GKE, as well as affiliated technologies and workflows including service mesh/ingress, CI/CD, monitoring stacks and security instruments.
  • Experience of using and managing Docker images.
  • Awareness of networking in Public Cloud environments.
  • Awareness of key security considerations when operating in the public cloud.


Main Responsibilities

  • Working as an embedded Cloud Platform Engineer within a software function to deploy, operate and support related cloud resources.
  • Taking accountability for the end-to-end delivery of cloud resources as part of software product initiatives.
  • Working with and influencing others to advocate and guide technical aspects of cloud adoption.
  • Working with the central Cloud Platform Team to embed key principles and standards in the operational running of responsible technologies.
  • Supporting and consulting with stakeholders.
  • Driving engineering excellence across your team by fostering modern engineering practices and processes.
  • Working with the central Cloud Platform Team to help steer the next iteration of self-serve automation technologies.


By applying to us you are agreeing to share your Personal Data in accordance with our Recruitment Privacy Policy - https://www.bet365careers.com/en/privacy-policy.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.