Data Engineering Lead

Butterworths Limited Company
united kingdom
9 months ago
Create job alert

About the Role


 

As the technical lead for the team building the strategic Data Platform at LexisNexis IP, you will be instrumental in executing our data strategy for the Data Platform. Your role will be pivotal in developing and implementing advanced solutions for data integration, quality control, and continuous delivery, driving our data operations to new heights.

Your expertise will be crucial in embedding best practices and state-of-the-art data engineering tools, ensuring that our workflows are both efficient and scalable.

Responsibilities
 

Architecting and leading the development of our patent data ingestion pipeline using Databricks, Python, and PySpark. Mentoring and guiding a team of data engineers, fostering a collaborative environment that encourages growth and innovation. You will enable and lead technical discussions within the team and with stakeholders Ensuring the pipeline is efficient, scalable, and robust, capable of handling terabytes of data with low latency. Eliminate inefficiencies and teach the techniques to the team. Contributing to the overall data engineering strategy and drive the adoption of best practices in coding, architecture, and deployment. Identifying and resolving technical challenges, ensuring the smooth operation of the data ingestion pipeline. Automating the boring stuff, and make space for the team to tackle the most challenging up and coming problems.


Requirements
 

Demonstrate expertise in Python, and PySpark is essential for you to lead the skill up the team. Demonstrate expertise in Databricks would be highly desirable and advantageous. Demonstrate ability to design and implement scalable data architectures for both batch and streaming data processing. Demonstrate proficiency in using cloud platforms such as AWS, Azure, or Google Cloud for data infrastructure management Knowledge of data governance practices, including data quality management, metadata management, and data lineage Proven experience in leading and mentoring technical data engineering teams.


Work in a way that works for you
 

We promote a healthy work/life balance across the organisation. We offer an appealing working prospect for our people. With numerous wellbeing initiatives, shared parental leave, study assistance and sabbaticals, we will help you meet your immediate responsibilities and your long-term goals.
 

Working flexible hours - flexing the times when you work in the day to help you fit everything in and work when you are the most productive


Working for you
 

We know that your wellbeing and happiness are key to a long and successful career. These are some of the benefits we are delighted to offer
 

Generous holiday allowance with the option to buy additional days Health screening, eye care vouchers and private medical benefits Wellbeing programs Life assurance Access to a competitive contributory pension scheme Save As You Earn share option scheme Travel Season ticket loan Electric Vehicle Scheme Optional Dental Insurance Maternity, paternity and shared parental leave Employee Assistance Programme Access to emergency care for both the elderly and children RECARES days, giving you time to support the charities and causes that matter to you Access to employee resource groups with dedicated time to volunteer Access to extensive learning and development resources Access to employee discounts scheme via Perks at Work

Related Jobs

View all jobs

Data Engineering Lead

Data Engineering Lead

Data Engineering Lead

Data Engineering Lead

Data Engineering Lead

Principal Consultant - Data Engineering (Lead)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Machine Learning Degrees (2025 Guide)

Explore ten UK universities that deliver world-class machine-learning degrees in 2025. Compare entry requirements, course content, research strength and industry links to find the programme that fits your goals. Machine learning (ML) has shifted from academic curiosity to the engine powering everything from personalised medicine to autonomous vehicles. UK universities have long been pioneers in the field, and their programmes now blend rigorous theory with hands-on practice on industrial-scale datasets. Below, we highlight ten institutions whose undergraduate or postgraduate pathways focus squarely on machine learning. League tables move each year, but these universities consistently excel in teaching, research and collaboration with industry.

How to Write a Winning Cover Letter for Machine Learning Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for machine learning jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the machine learning sector. When applying for a machine learning job, your cover letter is a vital part of your application. Machine learning is an exciting and rapidly evolving field, and your cover letter offers the chance to demonstrate your technical expertise, passion for AI, and your ability to apply machine learning techniques to solve real-world problems. Writing a cover letter for machine learning roles may feel intimidating, but by following a clear structure, you can showcase your strengths effectively. Whether you're just entering the field, transitioning from another role, or looking to advance your career in machine learning, this article will guide you through a proven four-paragraph structure. We’ll provide practical tips and sample lines to help you create a compelling cover letter that catches the attention of hiring managers in the machine learning job market.

Veterans in Machine Learning: A Military‑to‑Civilian Pathway into AI Careers

Introduction Artificial intelligence is no longer relegated to sci‑fi films—it underpins battlefield decision‑support, fraud detection, and even supermarket logistics. The UK Government’s 2025 AI Sector Deal forecasts an additional £200 billion in GDP by 2030, with machine‑learning (ML) engineers cited as the nation’s second most in‑demand tech role (Tech Nation 2024). The Ministry of Defence’s Defence AI Strategy echoes that urgency, earmarking £1.6 billion for FY 2025–28 to embed ML into planning, logistics, and autonomous systems. If you have ever tuned a radar filter, plotted artillery trajectories, or sifted sensor data for actionable intel, you have already worked with statistical modelling—the backbone of machine learning. This guide shows UK veterans how to reframe military experience for ML roles, leverage MoD transition funding, and land high‑impact positions building the models shaping tomorrow’s defence and commercial landscapes. Quick Win: Bookmark our live board for Machine‑Learning Engineer roles to see who’s hiring today.