Data Engineering Lead

Butterworths Limited Company
united kingdom
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineering Lead: Build Scalable Pipelines & Insights

Data Engineering Lead — Public Sector (Remote)

Data Engineering Lead & EDM Architect (Hybrid, London)

Senior Data Engineering Lead - Cloud Pipelines & Governance

Principal Consultant - Data Engineering Lead DBT

Up to £200,000 base + bonuses - Data Engineering Lead

About the Role


 

As the technical lead for the team building the strategic Data Platform at LexisNexis IP, you will be instrumental in executing our data strategy for the Data Platform. Your role will be pivotal in developing and implementing advanced solutions for data integration, quality control, and continuous delivery, driving our data operations to new heights.

Your expertise will be crucial in embedding best practices and state-of-the-art data engineering tools, ensuring that our workflows are both efficient and scalable.

Responsibilities
 

Architecting and leading the development of our patent data ingestion pipeline using Databricks, Python, and PySpark. Mentoring and guiding a team of data engineers, fostering a collaborative environment that encourages growth and innovation. You will enable and lead technical discussions within the team and with stakeholders Ensuring the pipeline is efficient, scalable, and robust, capable of handling terabytes of data with low latency. Eliminate inefficiencies and teach the techniques to the team. Contributing to the overall data engineering strategy and drive the adoption of best practices in coding, architecture, and deployment. Identifying and resolving technical challenges, ensuring the smooth operation of the data ingestion pipeline. Automating the boring stuff, and make space for the team to tackle the most challenging up and coming problems.


Requirements
 

Demonstrate expertise in Python, and PySpark is essential for you to lead the skill up the team. Demonstrate expertise in Databricks would be highly desirable and advantageous. Demonstrate ability to design and implement scalable data architectures for both batch and streaming data processing. Demonstrate proficiency in using cloud platforms such as AWS, Azure, or Google Cloud for data infrastructure management Knowledge of data governance practices, including data quality management, metadata management, and data lineage Proven experience in leading and mentoring technical data engineering teams.


Work in a way that works for you
 

We promote a healthy work/life balance across the organisation. We offer an appealing working prospect for our people. With numerous wellbeing initiatives, shared parental leave, study assistance and sabbaticals, we will help you meet your immediate responsibilities and your long-term goals.
 

Working flexible hours - flexing the times when you work in the day to help you fit everything in and work when you are the most productive


Working for you
 

We know that your wellbeing and happiness are key to a long and successful career. These are some of the benefits we are delighted to offer
 

Generous holiday allowance with the option to buy additional days Health screening, eye care vouchers and private medical benefits Wellbeing programs Life assurance Access to a competitive contributory pension scheme Save As You Earn share option scheme Travel Season ticket loan Electric Vehicle Scheme Optional Dental Insurance Maternity, paternity and shared parental leave Employee Assistance Programme Access to emergency care for both the elderly and children RECARES days, giving you time to support the charities and causes that matter to you Access to employee resource groups with dedicated time to volunteer Access to extensive learning and development resources Access to employee discounts scheme via Perks at Work

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.