National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Ops Engineer

Moss Nook
2 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Ops Engineer - AI

Tech Ops Data Analyst (Programmer)

Data Engineer & Operations Lead- Leading Company!...

Data Engineer & Operations Lead- Leading Company!

Treasury Data Engineer

Manchester (Hybrid working model, 2 days a week office based, 3 days remote)

Competitive Salary plus performance related bonus

Role Overview:

In this pivotal role, you will utilize your engineering expertise to streamline data processes, ensuring that our data is managed effectively, efficiently, and reliably across platforms. Your contributions will directly enhance our advanced analytics capabilities, promoting faster insights, and driving innovation in data practices. You’ll work closely with teams across the organization, creating agile and scalable solutions that directly influence our data science and analytics goals.

What You’ll Be Doing:

  1. Data Pipeline Development:

  • Design and implement complex ETL processes to extract, transform, and load data efficiently from diverse sources.

  • Develop real-time data processing pipelines using Apache Kafka or cloud-native streaming technologies.

  • Optimize batch processing workflows using distributed frameworks like Apache Spark and Apache Flink.

  1. Infrastructure Automation:

  • Implement Infrastructure as Code (IaC) to provision, configure, and manage cloud resources using Terraform, Ansible, and more.

  • Leverage cloud-native services (AWS, Azure) to enhance DataOps practices and reduce manual effort.

  1. Continuous Integration and Deployment (CI/CD):

  • Develop automated testing for data pipelines, validating business logic and data quality.

  • Orchestrate CI/CD pipelines with tools such as Jenkins, GitLab CI/CD, or Apache Airflow for data engineering workflows.

  1. Monitoring and Alerting:

  • Implement real-time monitoring with tools like Prometheus and Grafana to track pipeline health and performance.

  • Set up anomaly detection and alerting to proactively address issues in data latency and pipeline failures.

  1. DevOps Collaboration:

  • Collaborate cross-functionally with DevOps, data engineers, and business teams to promote DataOps best practices.

  • Engage in agile methodologies, including Scrum or Kanban, to prioritize tasks and drive continuous improvement.

  1. Performance Optimization:

  • Optimize SQL queries and distributed computing jobs for better performance.

  • Manage and optimize cloud resources to improve cost-efficiency and performance.

  1. Continuous Improvement:

  • Stay up-to-date with industry trends and enhance your skills through certifications and conferences.

  • Suggest and implement process improvements to streamline DataOps workflows and enhance productivity.

    What Are We Looking For?

  • Experience: Proficiency with database technologies (SQL Server, Oracle, MySQL, PostgreSQL).

  • Technical Skills: Expertise in data pipeline development, cloud platforms (AWS, Azure, Google Cloud), and DevOps practices.

  • Programming: Strong scripting skills in Python, Bash, or PowerShell.

  • Collaboration: Ability to work with cross-functional teams to design and deliver data solutions.

  • Communication: Excellent skills to translate complex technical concepts to non-technical stakeholders.

  • Problem-Solving: Strong troubleshooting and optimization capabilities for data systems and infrastructure.

    Desirable Skills & Experience:

  • Education: University degree or equivalent experience in a STEM field.

  • Industry Experience: Experience working in a regulated industry is a plus.

    About the DCC:

    At the DCC, we believe in making Britain more connected, so we can all lead smarter, greener lives. That desire to make a difference is what drives us every day and it wouldn’t be possible without our people. Each person at the DCC brings a special kind of power to the business, and if you join us, we’ll give you the means to unleash yours. Here, we depend on each other and hold each other accountable. You have the power to challenge and make change, to take the initiative and enjoy real responsibility. Whether it’s doing purposeful work, helping us grow or building the career you want – we’ll give you the support to do it all. Our secure network for smart meters is transforming Britain’s energy system and helping the country’s fight against climate change: we want you to be part of our journey.

    Company benefits:

    The DCC’s continued success depends on our people. It’s important to us that you enjoy coming to work, and feel healthy, happy and rewarded. In this role, you’ll have access to a range of benefits which you can choose from to create a personalized plan unique to your lifestyle.

    Please complete your application, so we can learn more about you. Your application will be carefully considered, and you’ll hear from us regarding its progress.

    Join the DCC and discover the power of you.

    What to do now

    Choose ‘Apply now’ to fill out our short application, so that we can find out more about you.

    As a Disability Confident member, DCC is committed to ensuring an inclusive and accessible recruitment process
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.