Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

UKRI Centre for Doctoral Training in Environmental Intelligence: Data Science & AI for Sustaina[...]

The International Society for Bayesian Analysis
Exeter
2 months ago
Applications closed

UKRI Centre for Doctoral Training in Environmental Intelligence: Data Science & AI for Sustainable Futures: 10 funded PhD places

Mar 13, 2019

Many of the most important problems we face today are related to the environment. Climate change, healthy oceans, water security, clean air, biodiversity loss, and resilience to extreme events all play a crucial role in determining our health, wealth, safety and future development. The vision of this Centre for Doctoral Training (CDT) is to provide a world-class training environment in Environmental Intelligence (EI): the integration of data from multiple inter-related sources to provide the evidence and tools that are required for informed decision-making, improved risk management, and the technological innovation that will lead us towards a more sustainable interaction with the natural environment.
Students will receive training in the range of skills required to become leaders in EI:
(i) the computational skills required to analyse data from a wide variety of sources;
(ii) expertise in environmental challenges;
(iii) an understanding of the governance, ethics and the potential societal impacts of collecting, mining, sharing and interpreting data, together with the ability to communicate and engage with a diverse range of stakeholders.
The training programme has been designed to be applicable to students with a range of backgrounds. Supervisors cover a range of disciplines and experiences related to the use of data in addressing environmental challenges. Students will have the opportunity to work with the CDT’s external partners, including the Met Office, and a range of international institutions and businesses, to ensure that they are well versed in both cutting edge methodology and on-the-ground policy and business implementation.

First cohort: ten fully-funded places are available to start in September 2019.

We welcome applications for this CDT in Environmental Intelligence (EI) to start in September 2019. Applications are made for entry to the 4-year training programme, including training in the fundementals of EI and supervision of your PhD research.
Fully funded 4-year studentships are available for UK and EU students. The funding is for four years and covers University tuition fees and all course fees, an annual stipend (which is £15,009 for the academic year 2019/20), and funds towards research activities. A limited number of studentships are available for exceptional international applicants. Self-funded students are welcome to apply.

Entry requirements

We welcome applications from those who are expected to receive, a 1st class or 2i undergraduate degree in a wide variety of subjects relevant to the application of Data Science and AI to environmental challenges. These might include, for example, computer science, statistics, mathematics, climate, health, economics, philosophy, and social and environmental sciences. For those without a computer science/mathematics background, additional training will be provided (if required) both before and after joining the CDT. We are happy to discuss alternative requirements for those with non-standard qualifications and/or experience.
For international students, the minimum requirement for entry to the CDT is IELTS 6.5 (with at least 6.0 in each of the four components), or equivalent.

Applying to the CDT

Initially, expressions of interest should be sent by email: . If you would like to have an informal discussion about the CDT, please contact us and we will arrange a suitable time for you to talk to one of the team.

Expressions of interest should include:
• Title, First Name, Surname, Email address;
• A short statement (no more than 250 words) explaining your motivation for applying to this CDT;
• A 2-page CV which includes your academic and work experience, your nationality and country of normal residence (for the past 3 years, not including full time education);
• Scans of your academic transcript(s);
• Details of where you heard about this CDT.

An initial selection will be made by a recruitment panel and selected candidates will be invited to an interview (that can be conducted by Skype).

Deadlines for submission

Application deadlines for the first cohort will be on 31st March 2019, 31st May 2019 and 31st July 2019. Interviews for those in the first round of applications are expected to start in April 2019. You are advised to apply early as the application process is competitive.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.

Why Now Is the Perfect Time to Launch Your Career in Machine Learning: The UK's Intelligence Revolution

The United Kingdom stands at the epicentre of a machine learning revolution that's fundamentally transforming how we solve problems, deliver services, and unlock insights from data at unprecedented scale. From the AI-powered diagnostic systems revolutionising healthcare in Manchester to the algorithmic trading platforms driving London's financial markets, Britain's embrace of intelligent systems has created an extraordinary demand for skilled machine learning professionals that dramatically exceeds the current talent supply. If you've been seeking a career at the forefront of technological innovation or looking to position yourself in one of the most impactful sectors of the digital economy, machine learning represents an exceptional opportunity. The convergence of abundant data availability, computational power accessibility, advanced algorithmic development, and enterprise AI adoption has created perfect conditions for machine learning career success.