UKRI Centre for Doctoral Training in Environmental Intelligence: Data Science & AI for Sustaina[...]

The International Society for Bayesian Analysis
Exeter
4 days ago
Create job alert
UKRI Centre for Doctoral Training in Environmental Intelligence: Data Science & AI for Sustainable Futures: 10 funded PhD places

Mar 13, 2019


Many of the most important problems we face today are related to the environment. Climate change, healthy oceans, water security, clean air, biodiversity loss, and resilience to extreme events all play a crucial role in determining our health, wealth, safety and future development. The vision of this Centre for Doctoral Training (CDT) is to provide a world‑class training environment in Environmental Intelligence (EI): the integration of data from multiple inter‑related sources to provide the evidence and tools that are required for informed decision‑making, improved risk management, and the technological innovation that will lead us towards a more sustainable interaction with the natural environment.
Students will receive training in the range of skills required to become leaders in EI:
(i) the computational skills required to analyse data from a wide variety of sources;
(ii) expertise in environmental challenges;
(iii) an understanding of the governance, ethics and the potential societal impacts of collecting, mining, sharing and interpreting data, together with the ability to communicate and engage with a diverse range of stakeholders.
The training programme has been designed to be applicable to students with a range of backgrounds. Supervisors cover a range of disciplines and experiences related to the use of data in addressing environmental challenges. Students will have the opportunity to work with the CDT’s external partners, including the Met Office, and a range of international institutions and businesses, to ensure that they are well versed in both cutting edge methodology and on‑the‑ground policy and business implementation.


First cohort: ten fully‑funded places are available to start in September 2019.


We welcome applications for this CDT in Environmental Intelligence (EI) to start in September 2019. Applications are made for entry to the 4‑year training programme, including training in the fundamentals of EI and supervision of your PhD research.
Fully funded 4‑year studentships are available for UK and EU students. The funding is for four years and covers University tuition fees and all course fees, an annual stipend (which is £15,009 for the academic year 2019/20), and funds towards research activities. A limited number of studentships are available for exceptional international applicants. Self‑funded students are welcome to apply.


Entry requirements


We welcome applications from those who are expected to receive a 1st class or 2i undergraduate degree in a wide variety of subjects relevant to the application of Data Science and AI to environmental challenges. These might include, for example, computer science, statistics, mathematics, climate, health, economics, philosophy, and social and environmental sciences. For those without a computer science/mathematics background, additional training will be provided (if required) both before and after joining the CDT. We are happy to discuss alternative requirements for those with non‑standard qualifications and/or experience.
For international students, the minimum requirement for entry to the CDT is IELTS 6.5 (with at least 6.0 in each of the four components), or equivalent.


Applying to the CDT


Initially, expressions of interest should be sent by email: . If you would like to have an informal discussion about the CDT, please contact us and we will arrange a suitable time for you to talk to one of the team.


Expressions of interest should include:



  • Title, First Name, Surname, Email address
  • A short statement (no more than 250 words) explaining your motivation for applying to this CDT
  • A 2‑page CV which includes your academic and work experience, your nationality and country of normal residence (for the past 3 years, not including full time education)
  • Scans of your academic transcript(s)
  • Details of where you heard about this CDT

An initial selection will be made by a recruitment panel and selected candidates will be invited to an interview (that can be conducted by Skype).


Deadlines for submission


Application deadlines for the first cohort will be on 31st March 2019, 31st May 2019 and 31st July 2019. Interviews for those in the first round of applications are expected to start in April 2019. You are advised to apply early as the application process is competitive.


#J-18808-Ljbffr

Related Jobs

View all jobs

Reader in Artificial Intelligence (Machine Learning, NLP, Reinforcement Learning, and AI Security)

Postdocs and Research Fellows: Probabilistic machine learning, Centre for AI Fundamentals, Manc[...]

Data Science Apprentice – Level 6 (Degree)

Research Fellows and Postdocs in Probabilistic Machine Learning and Bayesian Inference

Data Science Apprentice – Level 6 (Degree)

Data Science Apprenticeship (Level 6) — Flexible Hours & Growth

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.