National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Machine Learning Engineer - Knowledge Graph(Remote)

BenchSci
London
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer - up to £135k base plus equity

Senior Machine Learning Engineer - up to £135k base plus equity

Senior Machine Learning Engineer - up to £135k base plus equity

We are looking for a Senior Machine Learning Engineer to join our Knowledge Enrichment team at BenchSci.

You will help design and implement ML-based approaches to analyse, extract and generate knowledge from complex biomedical data such as experimental protocols and from results from several heterogeneous sources, including both publicly available data and proprietary internal data, represented in unstructured text and knowledge graphs. You will work alongside some of the brightest minds in tech, leveraging state of the art approaches to deliver on BenSci’s mission to expedite drug discovery. Knowledge Enrichment is at the core of this challenge as it ensures we can reason over and gain insights from an extensive, accurate, and high quality representation of biomedical data.

The data will be leveraged in order to enrich BenchSci’s knowledge graph through classification, discovery of high value implicit relationships, predicting novel insights/hypotheses, and other ML techniques. You will collaborate with your team members in applying state of the art ML and graph ML/data science algorithms to this data.

You are comfortable working in a team that pushes the boundaries of what is possible with cutting edge ML/AI, challenges the status quo, is laser focused on value delivery in a fail-fast environment.

You Will:

  • Analyse and manipulate a large, highly-connected biological knowledge graph constructed of data from multiple heterogeneous sources, in order to identify data enrichment opportunities and strategies
  • Work with data and knowledge engineering experts to design and develop knowledge enrichment approaches/strategies that can exploit data within our knowledge graph
  • Provide solutions related to classification, clustering, more-like-this-type querying, discovery of high value implicit relationships, and making inferences across the data that can reveal novel insights
  • Deliver robust, scalable and production-ready ML models, with a focus on optimising performance and efficiency
  • Architect and design ML solutions, from data collection and preparation, model selection, training, fine-tuning and evaluation, to deployment and monitoring
  • Collaborate with your teammates from other functions such as product management, project management and science, as well as other engineering disciplines
  • Sometimes provide technical leadership on Knowledge Enrichment projects that seek to use ML to enrich the data in BenchSci’s Knowledge Graph
  • Work closely with other ML engineers to ensure alignment on technical solutioning and approaches.
  • Liaise closely with stakeholders from other functions including product and science
  • Help ensure adoption of ML best practices and state of the art ML approaches within your team(s).Participate in various agile rituals and related practices

You Have:

  • Minimum 3, ideally 5+ years of experience working as an ML engineer
  • Some experience providing technical leadership on complex projects
  • Degree, preferably PhD, in Software Engineering, Computer Science, or a similar area
  • A proven track record of delivering complex ML projects working alongside high-performing ML, data, and software engineers using agile software development
  • Demonstrable ML proficiency with a deep understanding of how to utilize state-of-the-art NLP and ML techniques
  • Mastery of several ML frameworks and libraries, with the ability to architect complex ML systems from scratch
  • Extensive experience with Python and PyTorch
  • Track record of contributing to the successful delivery of robust, scalable and production-ready ML models, with a focus on optimising performance and efficiency
  • Experience with the full ML development lifecycle from architecture and technical design, through data collection and preparation, model selection, training, fine-tuning and evaluation, to deployment and maintenance
  • Familiarity with implementing solutions leveraging Large Language Models, as well as a deep understanding of how to implement solutions using Retrieval Augmented Generation (RAG) architecture
  • Experience with graph machine learning (i.e. graph neural networks, graph data science) and practical applications thereof
  • This is complimented by your experience working with Knowledge Graphs, ideally biological, and a familiarity with biological ontologies
  • Experience with complex problem solving and an eye for details such as scalability and performance of a potential solution
  • Comprehensive knowledge of software engineering, programming fundamentals and industry experience using Python
  • Experience with data manipulation and processing, such as SQL, Cypher or Pandas
  • A can-do proactive and assertive attitude - your manager believes in freedom and responsibility and helping you own what you do; you will excel best if this environment suits you
  • You have experience working in cross-functional teams with product managers, scientists, project managers, engineers from other disciplines (e.g. data engineering).Ideally you have worked in the scientific/biological domain with scientists on your team
  • Outstanding verbal and written communication skills. Can clearly explain complex technical concepts/systems to engineering peers and non-engineering stakeholders
  • A growth mindset continuously seeking to stay up-to-date with cutting-edge advances in ML/AI, complimented by actively engaging with the ML/AI community


#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.