Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Machine Learning Engineer

Norton Blake
City of London
1 week ago
Create job alert

Machine Learning Engineer, London (5 days a month in office), £90,000 - £110,000 per annum


My client, a leading regulatory intelligence company are currently looking to bring on an ML Engineer on a permanent basis. This is a key hire for the business and will look to move quickly for the right candidate.


They are based in Central London and you will be required in their London office 5 days per month.


As ML Engineer, your mission is to:

  • Participate in the continuous improvement of our client's products
  • Develop advanced NLP and AI-based products that will delight users
  • Provide excellence in cloud-based ML engineering, with as much focus on Operations as Development.
  • Expand of the Team’s knowledge via demonstration and documentation


Key Responsibilities

As a machine learning engineer, your main responsibility is to conduct the development and productionisation of ML and NLP-based features for the client's products - a SaaS Platform and an API.

  • Develop optimal ML & NLP solutions for use cases, from baseline to SOTA approaches, wherever appropriate.
  • Produce high quality, modular code, and deploy following our established DevOps CI/CD and best practices.
  • Improve the efficiency, performance, and scalability of ML & NLP models (this includes data quality, ingestion, loading, cleaning, and processing).
  • Stay up-to-date with ML & NLP research, and experiment with new models and techniques.
  • Perform code-reviews for your colleague’s code. Engage with them to raise standards of Software engineering.
  • Propose cloud architectures for ML-based products that need new infrastructure.
  • Participate in the monitoring and continuous improvement of existing ML systems.


Core requirements

Experience matters. But what is more important than raw number of years of experience is demonstrated proficiency (through GitHub profiles/online portfolios and the interview process itself). Bonus points for Stack Overflow and Kaggle contributions!


What we are looking for

  • Experience analysing large volumes of textual data (almost all of our use cases will involve NLP) 🔠
  • Ability to write clear, robust, and testable code, especially in Python 🐍
  • Familiarity with SQL and NoSQL/graph databases 🏦
  • Extensive experience with ML & DL platforms, frameworks, and libraries 📚
  • Extensive experience with end-to-end model design and deployment within cloud environments ☁️
  • A systems thinking approach 🌐, with passion for MLOps best practises 🌀
  • An engineer that can think in O(n) as much as plan the orchestration of their product.
  • Solid understanding of data structures, data modelling, and software architecture, especially cloud-based. 🏛️
  • An engineer that can keep up with mathematically and statistically-oriented colleagues 🔢
  • A healthy sense of humour.

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer (GenAI Algos)

Senior Machine Learning Engineer (GenAI Algos)

Senior Machine Learning Engineer (GenAI Algos)

Senior Machine Learning Engineer (GenAI Algos)

Senior Machine Learning Engineer - £600 per day Outside IR35

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.