National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Senior Machine Learning Engineer

Stealth Startup
Glasgow
4 days ago
Create job alert

We are a defence-tech startup from London that specializes in technologies that can analyze social data with the power of AI and psychology to generate insights and intelligence that were not possible before.


The company was founded on the premise that data can be used for social good and with our technology, we are building the capability to predict potential threats to companies or analyze public perception on various policies or initiatives and much more.


We are currently focussing on a variety of key projects within Defence as we see tremendous possibility to impact operational planning within the sector. As a company handling heavy and critical data, we believe this is a perfect time for a Machine Learning Engineer to join our team.


Who are we looking for?

We are looking for a Machine Learning Engineer to enhance our platform by designing and developing cutting-edge models to understand human behaviour.


Key Responsibilities

  • Support research team to produtionize scalable NLP models using state-of-the-art techniques and frameworks
  • Stay up-to-date with the latest advancements in NLP and machine learning, and apply new methodologies to improve existing models
  • Deploy data science models on scalable AWS cloud infrastructures, ensuring best practices for security and performance
  • Assist in Infrastructure as Code initiatives using Terraform
  • Write clean, maintainable Python code for data science software, ensuring high standards of code quality and maintainability
  • Continuously monitor and improve the performance of data science models in production
  • Work closely with cross-functional teams including behavioral scientists, data scientists, software engineers, and product managers to deliver end-to-end solutions


Relevant Experience & Mindset:

  • 4 years of experience in developing data science models, including NLP models, and deploying them in a production environment
  • Bachelors degree in computer science, data science, mathematics, statistics, engineering or related field
  • Proficiency in writing clean, robust, and scalable Python packages for backend functionality
  • Experience with Python data science and NLP libraries
  • Expertise in software development practices such as version control, code review, software design patterns, and CI/CD practices and tools
  • Experience of cloud computing platforms such as AWS, with knowledge of services like ECS, S3, and Lambda
  • Experience with containerisation technologies e.g. Docker
  • Experience of working with SQL or NoSQL databases
  • Team player who is proactive and resilient
  • A passion for social good


If you're looking for a venture with high impact and rapid growth with remote flexibility, please apply.

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.

Top 10 Mistakes Candidates Make When Applying for Machine-Learning Jobs—And How to Avoid Them

Landing a machine-learning job in the UK is competitive. Learn the 10 biggest mistakes applicants make—plus tested fixes, expert resources and live links that will help you secure your next ML role. Introduction From fintechs in London’s Square Mile to advanced-research hubs in Cambridge, demand for machine-learning talent is exploding. Job boards such as MachineLearningJobs.co.uk list new vacancies daily, and LinkedIn shows more than 10,000 open ML roles across the UK right now. Yet hiring managers still reject most CVs long before interview—often for avoidable errors. Below are the ten most common mistakes we see, each paired with a practical fix and a live resource link so you can dive deeper.