Senior Machine Learning Engineer

Stealth Startup
London
6 months ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

Senior Machine Learning Engineer

We are a defence-tech startup from London that specializes in technologies that can analyze social data with the power of AI and psychology to generate insights and intelligence that were not possible before.


The company was founded on the premise that data can be used for social good and with our technology, we are building the capability to predict potential threats to companies or analyze public perception on various policies or initiatives and much more.


We are currently focussing on a variety of key projects within Defence as we see tremendous possibility to impact operational planning within the sector. As a company handling heavy and critical data, we believe this is a perfect time for a Machine Learning Engineer to join our team.


Who are we looking for?

We are looking for a Machine Learning Engineer to enhance our platform by designing and developing cutting-edge models to understand human behaviour.


Key Responsibilities

  • Support research team to produtionize scalable NLP models using state-of-the-art techniques and frameworks
  • Stay up-to-date with the latest advancements in NLP and machine learning, and apply new methodologies to improve existing models
  • Deploy data science models on scalable AWS cloud infrastructures, ensuring best practices for security and performance
  • Assist in Infrastructure as Code initiatives using Terraform
  • Write clean, maintainable Python code for data science software, ensuring high standards of code quality and maintainability
  • Continuously monitor and improve the performance of data science models in production
  • Work closely with cross-functional teams including behavioral scientists, data scientists, software engineers, and product managers to deliver end-to-end solutions


Relevant Experience & Mindset:

  • 4 years of experience in developing data science models, including NLP models, and deploying them in a production environment
  • Bachelors degree in computer science, data science, mathematics, statistics, engineering or related field
  • Proficiency in writing clean, robust, and scalable Python packages for backend functionality
  • Experience with Python data science and NLP libraries
  • Expertise in software development practices such as version control, code review, software design patterns, and CI/CD practices and tools
  • Experience of cloud computing platforms such as AWS, with knowledge of services like ECS, S3, and Lambda
  • Experience with containerisation technologies e.g. Docker
  • Experience of working with SQL or NoSQL databases
  • Team player who is proactive and resilient
  • A passion for social good


If you're looking for a venture with high impact and rapid growth with remote flexibility, please apply.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.