Research Associate in Bioinformatics and Data Science

King's College London
London
2 weeks ago
Applications closed

Related Jobs

View all jobs

Research Associate in Bioinformatics and Data Science

Associate Director, Data Engineering Lead

Senior/Lead Product Manager

Senior Research Data Scientist

Senior Associate/Consultant, Supply Chain, Procurement & Manufacturing

Senior Associate/Consultant, Supply Chain, Procurement &Manufacturing

About us

The Sailem Group is a multidisciplinary research team dedicated to developing computational and AI-driven approaches to enhance cancer patient outcomes. Our work integrates deep learning, computer vision, and bioinformatics to extract meaningful insights from complex biological data.

A key focus of our group is the identification of prognostic and predictive biomarkers from whole slide histopathology images and spatial transcriptomics and proteomics data. By leveraging large-scale datasets, we aim to uncover patterns that can improve cancer diagnosis, prognosis and treatment stratification.

To achieve these goals, we develop advanced machine learning methodologies, particularly weakly supervised learning approaches, to analyze and classify imaging and transcriptomics data. Our research emphasizes explainability and robustness to ensure that AI-driven insights are reliable and clinically relevant.

We collaborate closely with experts in pathology, oncology, and biology to translate our findings into real-world applications. For more information about our research and collaborations, visit the Biomedical AI and Data Science Group website:www.hebasailem.com.

About the role

We are seeking a highly motivated and skilled Research Associate to join our dynamic and interdisciplinary team, contributing to cutting-edge research at the intersection of cancer biology, artificial intelligence, and biomedical data science. This role offers an exciting opportunity to work at the forefront of cancer research, developing computational approaches to analyze complex biological data and uncover insights that can improve patient outcomes.

The ideal candidate will have a PhD (or be near completion) in Bioinformatics, Computational Biology, Computer Science, Artificial Intelligence, or a related field. Candidates with extensive research or industrial experience will also be considered. You will collaborate closely with both computational and experimental researchers, bridging the gap between AI-driven analysis and biological discovery. Your primary responsibilities will include developing and implementing bioinformatics pipelines, analyzing high-dimensional datasets—including whole slide histopathology images and multi-omics data—and integrating diverse data sources to identify biomarkers and therapeutic targets.

In addition to conducting high-impact research, you will contribute to scientific publications, present findings at conferences, and support grant applications. We are looking for a proactive individual with strong problem-solving skills, excellent teamwork and communication abilities, and a passion for leveraging AI and data science to advance cancer research.

This is a full-time post (35 hours per week), and you will be offered a fixed-term contract for an initial period of 18 months, with the possibility of extension.

About you

To be successful in this role, we are looking for candidates to have the following skills and experience:

Essential criteria

  1. Have a PhD in Bioinformatics, Data Science, Computer Science, Machine Learning, Computer Vision, Biomedical Engineering, Computational Biology, or another related area.
  2. Excellent programming skills in Python or R.
  3. Good communication and teamwork skills, both written and oral, including the ability to write for publication, present research proposals and results, and represent the research group at meetings.
  4. Strong problem-solving skills and ability to work independently and in a team.
  5. Ability to contribute ideas for new research projects and research income generation.


Desirable criteria

  1. Experience in working with spatial transcriptomics data.
  2. Experience with deep learning approaches.
  3. Experience in large-scale image-based phenotyping.
  4. Experience in multi-modal data integration.
  5. Experience with data visualization and web applications development.


Further information

We pride ourselves on being inclusive and welcoming. We embrace diversity and want everyone to feel that they belong and are connected to others in our community. We are committed to working with our staff and unions on these and other issues, to continue to support our people and to develop a diverse and inclusive culture at King's.

We ask all candidates to submit a copy of their CV, and a supporting statement, detailing how they meet the essential criteria listed in the advert. If we receive a strong field of candidates, we may use the desirable criteria to choose our final shortlist, so please include your evidence against these where possible.

To find out how our managers will review your application, please take a look at our 'How we Recruit' pages.

We are able to offer sponsorship for candidates who do not currently possess the right to work in the UK.#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.