National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Research Associate in Bioinformatics and Data Science

King's College London
London
4 months ago
Applications closed

Related Jobs

View all jobs

Faculty in Data Science (Tenure Track/Tenured, Position # F1050A1)

Inkfish Research Scientist in Machine Learning for Wearables

Lead Bioinformatics Engineer (we have office locations in Cambridge, Leeds & London)

Bioinformatic Software Engineer

Research Associate in Machine Learning and Information Theory

Research Associate in AI and Data Science (Fixed term for 2 years)

About us

The Sailem Group is a multidisciplinary research team dedicated to developing computational and AI-driven approaches to enhance cancer patient outcomes. Our work integrates deep learning, computer vision, and bioinformatics to extract meaningful insights from complex biological data.

A key focus of our group is the identification of prognostic and predictive biomarkers from whole slide histopathology images and spatial transcriptomics and proteomics data. By leveraging large-scale datasets, we aim to uncover patterns that can improve cancer diagnosis, prognosis and treatment stratification.

To achieve these goals, we develop advanced machine learning methodologies, particularly weakly supervised learning approaches, to analyze and classify imaging and transcriptomics data. Our research emphasizes explainability and robustness to ensure that AI-driven insights are reliable and clinically relevant.

We collaborate closely with experts in pathology, oncology, and biology to translate our findings into real-world applications. For more information about our research and collaborations, visit the Biomedical AI and Data Science Group website:www.hebasailem.com.

About the role

We are seeking a highly motivated and skilled Research Associate to join our dynamic and interdisciplinary team, contributing to cutting-edge research at the intersection of cancer biology, artificial intelligence, and biomedical data science. This role offers an exciting opportunity to work at the forefront of cancer research, developing computational approaches to analyze complex biological data and uncover insights that can improve patient outcomes.

The ideal candidate will have a PhD (or be near completion) in Bioinformatics, Computational Biology, Computer Science, Artificial Intelligence, or a related field. Candidates with extensive research or industrial experience will also be considered. You will collaborate closely with both computational and experimental researchers, bridging the gap between AI-driven analysis and biological discovery. Your primary responsibilities will include developing and implementing bioinformatics pipelines, analyzing high-dimensional datasets—including whole slide histopathology images and multi-omics data—and integrating diverse data sources to identify biomarkers and therapeutic targets.

In addition to conducting high-impact research, you will contribute to scientific publications, present findings at conferences, and support grant applications. We are looking for a proactive individual with strong problem-solving skills, excellent teamwork and communication abilities, and a passion for leveraging AI and data science to advance cancer research.

This is a full-time post (35 hours per week), and you will be offered a fixed-term contract for an initial period of 18 months, with the possibility of extension.

About you

To be successful in this role, we are looking for candidates to have the following skills and experience:

Essential criteria

  1. Have a PhD in Bioinformatics, Data Science, Computer Science, Machine Learning, Computer Vision, Biomedical Engineering, Computational Biology, or another related area.
  2. Excellent programming skills in Python or R.
  3. Good communication and teamwork skills, both written and oral, including the ability to write for publication, present research proposals and results, and represent the research group at meetings.
  4. Strong problem-solving skills and ability to work independently and in a team.
  5. Ability to contribute ideas for new research projects and research income generation.


Desirable criteria

  1. Experience in working with spatial transcriptomics data.
  2. Experience with deep learning approaches.
  3. Experience in large-scale image-based phenotyping.
  4. Experience in multi-modal data integration.
  5. Experience with data visualization and web applications development.


Further information

We pride ourselves on being inclusive and welcoming. We embrace diversity and want everyone to feel that they belong and are connected to others in our community. We are committed to working with our staff and unions on these and other issues, to continue to support our people and to develop a diverse and inclusive culture at King's.

We ask all candidates to submit a copy of their CV, and a supporting statement, detailing how they meet the essential criteria listed in the advert. If we receive a strong field of candidates, we may use the desirable criteria to choose our final shortlist, so please include your evidence against these where possible.

To find out how our managers will review your application, please take a look at our 'How we Recruit' pages.

We are able to offer sponsorship for candidates who do not currently possess the right to work in the UK.#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.