National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Bioinformatic Software Engineer

York Place
1 week ago
Create job alert

Join an exciting biotech start-up in Edinburgh that’s developing next-generation technology relating to RNA sequencing, bioinformatics, and diagnostic development. Backed by academic expertise and driven by a mission to advance precision medicine, this agile team is developing tools to transform how RNA is discovered and analysed. As the company scales, it’s looking for a Bioinformatic Software Engineer to lead the build-out of cloud infrastructure and analysis pipelines critical to its technology platform.

This is an opportunity to join a growing, cross-functional team working on meaningful challenges in biology and data science, where your ideas and engineering skills will have a direct impact on product development and scientific discovery.

Bioinformatic Software Engineer responsibilities

Design, develop, optimise, and maintain cloud computing environments for bioinformatic data processing.

Build scalable, well-documented data analysis pipelines for long-read RNA sequencing workflows.

Develop and implement logging, reporting, and data archiving systems to support reproducible research.

Lead software engineering best practices, including testing, version control, deployment, and documentation.

Generate visualisations and reports to communicate key findings from complex transcriptomic datasets.

Collaborate closely with biologists, data scientists, and product stakeholders across the business.

Bioinformatic Software Engineer requirements:

Proven software engineering and DevOps experience within a research or R&D setting.

Strong understanding of sequencing data analysis, particularly read alignment and variant calling algorithms.

Degree educated in Computer Science, Bioinformatics, or a related field.

At least 3 years' relevant experience, ideally with RNAseq data and associated tool development.

Solid programming skills in object-oriented languages and scripting languages (e.g. Python, Perl, Bash).

Experience with software quality assurance practices such as version control, testing, and validation.

Desirable experience:

Commercial experience in a software or biotech setting.

Cloud computing experience (e.g. AWS, GCP, or Azure).

Familiarity with Unix/Linux systems.

Knowledge of transcriptomic technologies such as Illumina, PacBio, or Nanopore.

Understanding of transcriptome annotation and the impact of alternative splicing.

Skills in R, C++, or similar for statistical analysis and visualisation.

Personal Attributes:

Curious and proactive, with a desire to learn and ask questions.

Strong communicator, able to collaborate across disciplines.

Thoughtful problem-solver with a strategic mindset.

Open, respectful, and team-oriented in working style.

This is a rare chance to join a well-supported start-up at an exciting stage of growth. You will be working on complex scientific problems with a direct line to product impact, in a collaborative environment where your contributions will shape the company’s direction and technology.

£Comp + company benefits

Bioinformatics/Software Engineering/RNA Seq/Python

Related Jobs

View all jobs

Lead Bioinformatics Engineer (we have office locations in Cambridge, Leeds & London)

Data Science Manager

Data Scientist

Deep Learning AI Engineer / Bioinformatics - Expression of Interest

Data Engineer

Principal / Senior Data Scientist

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.