Research Assistant or Research Fellow in Bioinformatics

Cranfield University
Cranfield
11 months ago
Applications closed

Related Jobs

View all jobs

Business Data Analyst

Diabetes Data Scientist (GRA/PDRA)

Graduate Clinical Data Analyst

Research Assistant/Associate in Exoplanetary Remote Sensing and Data Science (up to 2 posts) (F[...]

Research Assistant in Medical Data Science

Hybrid Medical Data Science Research Assistant

Role Description

We are seeking a passionate and skilled researcher to join our groundbreaking research on climate-informed food safety and pathogen impact modeling at Cranfield University.

About the Role

You will join the Bioinformatics genomic informatics team as part of the Horizon-Europe’s . The project aims to enable for the first time a holistic, systemic approach to food safety risk assessment across the supply chain in view of climate change models with the use of digital technologies, including AI.

This role involves leading innovative research to develop climate-informed impact models for enteric pathogens in fresh produce and mycotoxin contamination in short-grain cereals under varying climate scenarios. You will conduct climate-controlled experiments to study mycotoxin production, generate transcriptomic profiles using RNA-Seq, and identify key mycotoxin-producing gene clusters. Leveraging integrated transcriptomic and climate data, you will develop and optimize predictive models for forecasting mycotoxin levels, ensuring precision beyond traditional approaches. The role also involves collaborating with international partners, contributing to teaching activities, and disseminating research findings through high-impact publications and conferences.

About You

You will have a PhD in Bioinformatics, Systems Biology, Microbiology, Molecular Biology, or a related field (or be close to completion). For Research Assistant, you will have an MSc in Bioinformatics or related fields with demonstratable experience in genomic and transcriptomic analysis. You should demonstrate expertise in designing and conducting growth chamber experiments, as well as bioinformatics skills for RNA-Seq transcriptomic analysis, including assembly, differential expression, and functional annotation. Experience with molecular biology techniques and a strong understanding of Fusarium species and mycotoxin contamination mechanisms are ideal. Proficiency in using high-throughput sequencing technologies, computational tools, and scripting languages (e.g., Python, R) is required. Familiarity with predictive modeling techniques and integrating climate data with biological data will be advantageous.

About Us

As a specialist postgraduate university, Cranfield’s world-class expertise, large-scale facilities and unrivalled industry partnerships are creating leaders in technology and management globally. Learn more about Cranfield and our unique impact .

The Bioinformatics Group at Cranfieldis a computer-based group with research focusing on the development and application of computational methods and AI in order to unravel the complexity of biological systems. We run and administer our in-house high-performance-computing facility for NGS data analysis, including de-novo assembly, global transcriptomics, and genotyping. We also have a long track record in data science and machine learning.

Our Values and Commitments

Our shared, stated values help to define who we are and underpin everything we do: Ambition; Impact; Respect; and Community. Find out more .

We aim to create and maintain a culture in which everyone can work and study together and realise their full potential. We are a Disability Confident Employer and proud members of the Stonewall Diversity Champions Programme. We are committed to actively exploring flexible working options for each role and have been ranked in the Top 30 family friendly employers in the UK by the charity . Find out more about our key commitments to Equality, Diversity and Inclusion and Flexible Working .

Working Arrangements

Collaborating and connecting are integral to so much of what we do. Our Working Arrangements Framework provides many staff with the opportunity to flexibly combine on-site and remote working, where job roles allow, balancing the needs of our community of staff, students, clients and partners.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.