Product Manager

Axle Energy
London
2 months ago
Applications closed

Related Jobs

View all jobs

Product Manager

Product Manager – Smart Diagnostics & Digitalization

Product Manager – Digitalization

Product Manager – Digitalization

AI Product Manager – Legal only

Senior Product Manager - AI, ML & Data Science

We're hiring our first product manager to shape our existing product and figure out new ones.

The electricity grid is changing beyond recognition, and without deploying new software to orchestrate it, we'll be unable to decarbonise.

At Axle, we're building the infrastructure that'll underpin the decarbonised energy system. Our software crushes CO2 and energy costs. Our goal is insanely ambitious, and we're building a team to match the scale of this challenge. We've just raised a Seed round from world-leading investors including Accel (TechCrunch) and we're growing fast.

We make the technology to move energy usage to times when electricity is cheap and green. Our software controls vehicle charging, heating systems, and home batteries. We use machine learning to figure out what energy people will need, and when they'll need it. We control tens of thousands of energy assets, and we're growing quickly.

Axle is a unique startup. We're building in a legacy industry and moving gigawatt-hours of electrons in the real world, but we operate at lightning speed. We ship extraordinarily quickly, and we're experts in electricity systems. We're backed by some of the best investors in the world, and we're growing the team to meet customer demand.

Requirements

This is a high-velocity, high-impact role. To succeed, you'll need to learn quickly, absorb technical information, and think strategically.

You'll need to be strong with data, and have a ‘run through walls' attitude to overcome the inevitable barriers. You'll work closely with clients and engineers to figure out what we need to build to accelerate the growth of the company and the decarbonisation of the economy.

You can expect:

  • insane amounts of ownership
  • to work with engineers who care about real world value
  • whitespace to explore new directions in a rapidly growing company

In return, we ask for:

  • an intense focus on shipping
  • a scrappy, entrepreneurial approach
  • deep-seated motivation to combat climate change

It'd be nice if you could bring:

  • knowledge of the electricity system
  • design skills - we prototype a lot
  • strong tech chops; you shouldn't be afraid of digging into the DB

Interview process

  • Initial interview
  • Take-home exercise
  • Final interview (in-person)
  • Offer, references, and welcome to the team!

Benefits
We love the idea of fully remote work but it doesn't work. For very early stage companies, people learn faster, get on better, and accomplish more when they're spending a decent chunk of time together. We ask that you spend 2-3 days a week in our London office.

We areextremelykeen to build a diverse company, and we're particularly eager to hear from candidates who don't fit the traditional role stereotypes. If you're motivated by our mission, please do reach out, even if you feel you might not ‘check all the boxes'.Seniority level

  • Mid-Senior level

Employment type

  • Full-time

Job function

  • Product Management and Marketing
  • Industries
  • IT Services and IT Consulting

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.