AI Product Manager – Legal only

London
9 months ago
Applications closed

Related Jobs

View all jobs

Benefit Risk Management Center of Excellence Data Scientist

Data Science Manager - Advanced Analytics & AI

Data Analysts ITSM and Azure Data Platform

Senior Data Engineer

Data Analyst

AI Product Manager - Data Science (Energy) - London

Please note: Do not send in your CV if you do not have any recent Legal experience within 2 to 3 years. Hybrid model offers 2 days WFH and 3 days in the office, depending on workload.

Job purpose:

  • A leading international Law Firm organisation is expanding its IT Services team and is seeking an AI Product Manager to take ownership of a dynamic portfolio of AI tools—spanning both internally developed systems and cutting-edge third-party products.

  • This role offers a rare opportunity to influence the AI roadmap within a progressive and fast-paced environment. You’ll work at the intersection of legal tech, AI innovation, and product strategy, helping to shape the digital future of a highly respected sector.

    Skills required:

  • Experience working for a law firm or legal operations (Essential)

  • Proven experience in product management — buying and building applications.

  • Deep understanding of AI technologies: ML, NLP, neural networks

  • Strong project management skills with multitasking ability

  • Exceptional written and verbal communication

  • Analytical mindset with proficiency in data tools

  • Bachelor’s degree in Computer Science, Engineering, Business or related field (advanced degree preferred)

    This position comes with very good benefits and offers a secure, stable and career growth path.

    Be part of the team that’s shaping what’s next in AI and digital innovation

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.