Senior Data Scientist

Chambers & Partners
London
3 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Overview
We’re seeking a Senior Data Scientist to lead the development of advanced analytics and AI/ML solutions that unlock real value across our business. This is a contract role for 6 months.

In this contract role, you'll work with proprietary and B2B research datasets to design, deliver, and scale data-driven products. Collaborating closely with teams in Product, Research, and Technology, you'll help turn strategic ideas into working MVPs—ensuring high standards of methodology, quality, and business relevance throughout.

You’ll also help shape the data science environment by working alongside our tech teams to support a robust and flexible infrastructure, including sandbox environments for onboarding and evaluating new data sources.

This is a great opportunity for a self-driven, impact-oriented data scientist who thrives in a fast-paced, cross-functional setting—and is eager to deliver meaningful results in a short time frame.

Main Duties and Responsibilities

  1. Spearhead and execute complex data science projects using a combination of open-source and cloud tools, driving innovation and delivering actionable insights.
  2. Develop and deploy advanced machine learning models using cloud-based platforms.
  3. Collaborate with product managers and designers to ensure the feasibility of product extensions and new products based on existing proprietary, quantitative, and qualitative datasets.
  4. Work with outputs from Research and historical data to identify consistent and inconsistent product features and document precise requirements for improved consistency.
  5. Collaborate with designers, Tech colleagues, and expert users to come up with engaging ways to visualize data and outliers/exceptions for non-technical audiences.
  6. Design and develop novel ways to showcase and highlight key analysis from complex datasets, including joining across datasets that do not perfectly match.
  7. Collaborate with Product, Tech, Research, and other stakeholders to understand and define a new, marketable product from existing data.
  8. Create and present progress reports and ad-hoc reviews to key stakeholders and teams.
  9. Constantly think about and explain to stakeholders how analytics “products” could be refined and productionized in the future.
  10. Work with Tech colleagues to improve the Data Science workspace, including providing requirements for Data Lake, Data Pipeline, and Data Engineering teams.
  11. Expand on the tools and techniques already developed.
  12. Help us understand our customers (both internal and external) better so we can provide the right solutions to the right people, including proactively suggesting solutions for nebulous problems.
  13. Be responsible for the end-to-end Data Science lifecycle: investigation of data, from data cleaning to extracting insights and recommending production approaches.
  14. Responsible for demonstrating value addition to stakeholders.
  15. Coach, guide, and nurture talent within the data science team, fostering growth and skill development.

Skills and Experience

  • Delivering significant and valuable analytics projects/assets in industry and/or professional services.
  • Proficiency in programming languages such as Python or R, with extensive experience with LLMs, ML algorithms, and models.
  • Experience with cloud services like Azure ML Studio, Azure Functions, Azure Pipelines, MLflow, Azure Databricks, etc., is a plus.
  • Experience working in Azure/Microsoft environments is considered a real plus.
  • Proven understanding of data science methods for analyzing and making sense of research data outputs and survey datasets.
  • Fluency in advanced statistics, ideally through both education and experience.

Person Specification

  • Bachelor's, Master's, or PhD in Data Science, Computer Science, Statistics, or a related field.
  • Comfortable working with uncertainty and ambiguity, from initial concepts through iterations and experiments to find the right products/services to launch.
  • Excellent problem-solving and strong analytical skills.
  • Proven aptitude to learn new tools, technologies, and methodologies.
  • Understanding of requirements for software engineering and data governance in data science.
  • Proven ability to manage and mentor data science teams.
  • Evidence of taking a company or department on a journey from Analytics to Data Science to AI and ML deployed at scale.
  • Ability to translate complex analysis findings into clear narratives and actionable insights.
  • Excellent communication skills, with the ability to listen and collaborate with non-technical and non-quantitative stakeholders.
  • Experience working with client-facing and Tech teams to ensure proper data collection, quality, and reporting formats.
  • Experience presenting investigations and insights to audiences with varying skill sets and backgrounds.
  • Nice to have: experience working with market research methods and datasets.
  • Nice to have: experience in the professional services or legal sector.
  • B2B market research experience would be a significant plus.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.