Product Manager – Smart Diagnostics & Digitalization

Kingston upon Hull
8 months ago
Applications closed

Related Jobs

View all jobs

Senior AI Data Scientist

Data Scientist in Power Electrical Systems

Lead Management, CX and Digital Communications Data Analyst Apprentice

Data Scientist/AI Engineer

Data Analyst

Senior Data Scientist, Surfline Coastal Intelligence

Product Manager – Smart Diagnostics & Digitalization

Location: Remote
Industry: Feed & Biofuel / Renewable Energy / Industrial Automation
Type: Full-Time | Permanent

About Us

We are working with a global leader in the design and construction of advanced feed and biomass production plants. Their mission is to deliver high-performance industrial solutions that maximize sustainability, efficiency, and uptime. As they expand their digital capabilities, we are looking for a Product Manager with a strong mechanical background and expertise in smart diagnostics and digital product development.

Role Overview

As Product Manager for Smart Diagnostics, you will lead the development of innovative digital tools to monitor and diagnose mechanical assets across a global customer base. This includes leveraging machine learning, sensor data, and domain expertise to reduce downtime and improve operational efficiency.

You’ll play a key role in conceptualizing, designing, and delivering digital products from scratch, bridging the gap between mechanical engineering and next-gen digital solutions.

Key Responsibilities

  • Design and develop digital diagnostic products for mechanical assets (e.g., pellet mills, conveyors, grinders).

  • Define and own the product roadmap for smart maintenance and condition monitoring solutions.

  • Utilize machine data, vibration analysis, and performance metrics to predict failure modes and optimize service schedules.

  • Apply machine learning models to real-world machine behavior in feed and biomass plants.

  • Collaborate with software engineers, data scientists, service engineers, and plant designers.

  • Engage with customers and stakeholders to understand their pain points and tailor solutions.

  • Lead end-to-end product lifecycle from idea to commercial launch.

  • Ensure full alignment with engineering, digital development, and commercial teams.

  • Contribute to building an intelligent service platform for the industry of tomorrow.

    What We’re Looking For

  • Mechanical Engineering degree or similar technical background.

  • Proven experience in diagnostic systems, predictive maintenance, or condition monitoring.

  • Strong understanding of mechanical asset behavior in industrial environments.

  • Experience applying machine learning models or working alongside data science teams.

  • Ability to create digital products from the ground up in a structured and user-centric way.

  • Excellent communication and cross-functional collaboration skills.

  • Experience in the Feed & Biofuel or biomass processing industry is highly desirable.

  • Fluent in English; additional languages are a plus.

    What We Offer

  • A key role in shaping the future of digital maintenance in renewable industries.

  • Opportunity to work with cutting-edge technologies and meaningful industrial applications.

  • A collaborative, international environment with significant autonomy.

  • Competitive salary and benefits package.

  • Travel opportunities and career progression within a global leader

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.