Portfolio Lead, Sustainability

DeepMind
London
1 year ago
Applications closed

Related Jobs

View all jobs

Portfolio Revenue & Debt Data Scientist

Portfolio Revenue & Debt Data Scientist

Data Scientist

Research Data Analyst

Data Analyst

SAS Data Engineer

At Google DeepMind, we value diversity of experience, knowledge, backgrounds and perspectives and harness these qualities to create extraordinary impact. We are committed to equal employment opportunity regardless of sex, race, religion or belief, ethnic or national origin, disability, age, citizenship, marital, domestic or civil partnership status, sexual orientation, gender identity, pregnancy, or related condition (including breastfeeding) or any other basis as protected by applicable law. If you have a disability or additional need that requires accommodation, please do not hesitate to let us know.


Snapshot

The Google DeepMind Impact Accelerator (GDI) has a unique role in Google DeepMind (GDM), to drive real world impact with solutions and resources built on GDM's technologies and expertise that extend the benefits to humanity.


About us

Artificial Intelligence could be one of humanity's most useful inventions. At Google DeepMind, we're a team of scientists, engineers, machine learning experts and more, working together to advance the state of the art in artificial intelligence. We use our technologies for widespread public benefit and scientific discovery, and collaborate with others on critical challenges, ensuring safety and ethics are the highest priority.


The role

Working in partnership with GDI's leadership, you will develop and be responsible for a portfolio within our AI for Sustainability effort, including directing, organising and driving activities that advance the positive impact to sustainability in this domain area. This is an evolving and dynamic area of Google DeepMind with a collaborative, diverse group that partners closely with a wide variety of teams across Google DeepMind, Alphabet and a range of external partners.


Key responsibilities

  • Identify opportunities to use Google DeepMind technology to solve real-world problems in this domain, and determine the best approach and execution plans for prioritised ideas, alongside research, engineering and GDI teams.
  • Bring together and motivate individuals (including Scientists and Engineers) from across Google DeepMind to work on projects related to AI applications to sustainability.
  • Drive a portfolio of projects related to these applications, taking ownership of defining objectives, outlining strategies, and achieving results.
  • Scope, prototype and launch solutions incorporating research improvements, ideas from stakeholders and the deep understanding of user needs and preferences you have developed, to ensure equal access and wide adoption of the solutions.
  • Build and manage external ecosystem relationships in the specific domain.
  • Deliver continuous success of programs against their objectives, evaluating them structurally and driving interventions when needed.
  • Oversee budgets and resourcing, working closely with the team and program manager to optimise and manage it.

The role will suit candidates who enjoy applying state-of-the-art AI to important real-world problems that maximise positive impact for the wider community.


About you

In order to set you up for success as the Sustainability Portfolio Lead at Google DeepMind, we look for the following skills and experience:

  • Demonstrable experience and knowledge of driving sizeable programs relating to real world AI applications, from inception to delivery in a fast paced and dynamic environment successfully collaborating across multiple high performing stakeholders.
  • Prior professional experience and/or an academic background in an area of sustainability, such as climate, biodiversity or material sciences.
  • Confidence and effectiveness in engaging researchers and engineers. While not an ML specialist yourself, you are able to understand the considerations related to AI research and technologies.
  • Program and Product Management experience; crafting strategic product roadmaps from conception to launch, driving decisions based on insights driving equitable usage.
  • High quality and ethical standard that is showcased on your approach on making decisions and communicating results.
  • Management experience and a proven ability to collaborate with a variety of talented colleagues, teams and partners.
  • Outstanding communication skills and ability to work with both tech and non-tech teams and senior leadership.
  • A passion for Google DeepMind's mission and knowledgeable and excited about AI and its potential for scientific and real-world impact.

Deadline to apply: 5pm GMT, Sunday 5th January.

Note: In the event your application is successful and an offer of employment is made to you, any offer of employment will be conditional on the results of a background check, performed by a third party acting on our behalf. For more information on how we handle your data, please see our Applicant and Candidate Privacy Policy.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.