National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Portfolio Lead, Sustainability

DeepMind
London
5 months ago
Applications closed

Related Jobs

View all jobs

Lead Credit Risk Analyst - Consumer Lending / Loans

Lead Data Engineer | Cardiff, UK

Lead Data Scientist, Global Commercial Data Science...

Applied AI ML Lead - Senior Machine Learning Engineer - Commercial and Investment Bank

Senior Software/Data Engineering Lead

Applied AI ML Lead - Senior Machine Learning Engineer - Commercial and Investment Bank

At Google DeepMind, we value diversity of experience, knowledge, backgrounds and perspectives and harness these qualities to create extraordinary impact. We are committed to equal employment opportunity regardless of sex, race, religion or belief, ethnic or national origin, disability, age, citizenship, marital, domestic or civil partnership status, sexual orientation, gender identity, pregnancy, or related condition (including breastfeeding) or any other basis as protected by applicable law. If you have a disability or additional need that requires accommodation, please do not hesitate to let us know.


Snapshot

The Google DeepMind Impact Accelerator (GDI) has a unique role in Google DeepMind (GDM), to drive real world impact with solutions and resources built on GDM's technologies and expertise that extend the benefits to humanity.


About us

Artificial Intelligence could be one of humanity's most useful inventions. At Google DeepMind, we're a team of scientists, engineers, machine learning experts and more, working together to advance the state of the art in artificial intelligence. We use our technologies for widespread public benefit and scientific discovery, and collaborate with others on critical challenges, ensuring safety and ethics are the highest priority.


The role

Working in partnership with GDI's leadership, you will develop and be responsible for a portfolio within our AI for Sustainability effort, including directing, organising and driving activities that advance the positive impact to sustainability in this domain area. This is an evolving and dynamic area of Google DeepMind with a collaborative, diverse group that partners closely with a wide variety of teams across Google DeepMind, Alphabet and a range of external partners.


Key responsibilities

  • Identify opportunities to use Google DeepMind technology to solve real-world problems in this domain, and determine the best approach and execution plans for prioritised ideas, alongside research, engineering and GDI teams.
  • Bring together and motivate individuals (including Scientists and Engineers) from across Google DeepMind to work on projects related to AI applications to sustainability.
  • Drive a portfolio of projects related to these applications, taking ownership of defining objectives, outlining strategies, and achieving results.
  • Scope, prototype and launch solutions incorporating research improvements, ideas from stakeholders and the deep understanding of user needs and preferences you have developed, to ensure equal access and wide adoption of the solutions.
  • Build and manage external ecosystem relationships in the specific domain.
  • Deliver continuous success of programs against their objectives, evaluating them structurally and driving interventions when needed.
  • Oversee budgets and resourcing, working closely with the team and program manager to optimise and manage it.

The role will suit candidates who enjoy applying state-of-the-art AI to important real-world problems that maximise positive impact for the wider community.


About you

In order to set you up for success as the Sustainability Portfolio Lead at Google DeepMind, we look for the following skills and experience:

  • Demonstrable experience and knowledge of driving sizeable programs relating to real world AI applications, from inception to delivery in a fast paced and dynamic environment successfully collaborating across multiple high performing stakeholders.
  • Prior professional experience and/or an academic background in an area of sustainability, such as climate, biodiversity or material sciences.
  • Confidence and effectiveness in engaging researchers and engineers. While not an ML specialist yourself, you are able to understand the considerations related to AI research and technologies.
  • Program and Product Management experience; crafting strategic product roadmaps from conception to launch, driving decisions based on insights driving equitable usage.
  • High quality and ethical standard that is showcased on your approach on making decisions and communicating results.
  • Management experience and a proven ability to collaborate with a variety of talented colleagues, teams and partners.
  • Outstanding communication skills and ability to work with both tech and non-tech teams and senior leadership.
  • A passion for Google DeepMind's mission and knowledgeable and excited about AI and its potential for scientific and real-world impact.

Deadline to apply: 5pm GMT, Sunday 5th January.

Note: In the event your application is successful and an offer of employment is made to you, any offer of employment will be conditional on the results of a background check, performed by a third party acting on our behalf. For more information on how we handle your data, please see our Applicant and Candidate Privacy Policy.

#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.