Portfolio Lead, Sustainability

DeepMind
London
4 months ago
Applications closed

Related Jobs

View all jobs

I&T Delivery Lead - Carbon / Carbon Data / Oracle ERP

Data Analytics & Data Science Lead

PMO/Portfolio Data Analyst

Lead Data Scientist

Data Engineering and Fabric Team Lead

Lead Data Scientist

At Google DeepMind, we value diversity of experience, knowledge, backgrounds and perspectives and harness these qualities to create extraordinary impact. We are committed to equal employment opportunity regardless of sex, race, religion or belief, ethnic or national origin, disability, age, citizenship, marital, domestic or civil partnership status, sexual orientation, gender identity, pregnancy, or related condition (including breastfeeding) or any other basis as protected by applicable law. If you have a disability or additional need that requires accommodation, please do not hesitate to let us know.


Snapshot

The Google DeepMind Impact Accelerator (GDI) has a unique role in Google DeepMind (GDM), to drive real world impact with solutions and resources built on GDM's technologies and expertise that extend the benefits to humanity.


About us

Artificial Intelligence could be one of humanity's most useful inventions. At Google DeepMind, we're a team of scientists, engineers, machine learning experts and more, working together to advance the state of the art in artificial intelligence. We use our technologies for widespread public benefit and scientific discovery, and collaborate with others on critical challenges, ensuring safety and ethics are the highest priority.


The role

Working in partnership with GDI's leadership, you will develop and be responsible for a portfolio within our AI for Sustainability effort, including directing, organising and driving activities that advance the positive impact to sustainability in this domain area. This is an evolving and dynamic area of Google DeepMind with a collaborative, diverse group that partners closely with a wide variety of teams across Google DeepMind, Alphabet and a range of external partners.


Key responsibilities

  • Identify opportunities to use Google DeepMind technology to solve real-world problems in this domain, and determine the best approach and execution plans for prioritised ideas, alongside research, engineering and GDI teams.
  • Bring together and motivate individuals (including Scientists and Engineers) from across Google DeepMind to work on projects related to AI applications to sustainability.
  • Drive a portfolio of projects related to these applications, taking ownership of defining objectives, outlining strategies, and achieving results.
  • Scope, prototype and launch solutions incorporating research improvements, ideas from stakeholders and the deep understanding of user needs and preferences you have developed, to ensure equal access and wide adoption of the solutions.
  • Build and manage external ecosystem relationships in the specific domain.
  • Deliver continuous success of programs against their objectives, evaluating them structurally and driving interventions when needed.
  • Oversee budgets and resourcing, working closely with the team and program manager to optimise and manage it.

The role will suit candidates who enjoy applying state-of-the-art AI to important real-world problems that maximise positive impact for the wider community.


About you

In order to set you up for success as the Sustainability Portfolio Lead at Google DeepMind, we look for the following skills and experience:

  • Demonstrable experience and knowledge of driving sizeable programs relating to real world AI applications, from inception to delivery in a fast paced and dynamic environment successfully collaborating across multiple high performing stakeholders.
  • Prior professional experience and/or an academic background in an area of sustainability, such as climate, biodiversity or material sciences.
  • Confidence and effectiveness in engaging researchers and engineers. While not an ML specialist yourself, you are able to understand the considerations related to AI research and technologies.
  • Program and Product Management experience; crafting strategic product roadmaps from conception to launch, driving decisions based on insights driving equitable usage.
  • High quality and ethical standard that is showcased on your approach on making decisions and communicating results.
  • Management experience and a proven ability to collaborate with a variety of talented colleagues, teams and partners.
  • Outstanding communication skills and ability to work with both tech and non-tech teams and senior leadership.
  • A passion for Google DeepMind's mission and knowledgeable and excited about AI and its potential for scientific and real-world impact.

Deadline to apply: 5pm GMT, Sunday 5th January.

Note: In the event your application is successful and an offer of employment is made to you, any offer of employment will be conditional on the results of a background check, performed by a third party acting on our behalf. For more information on how we handle your data, please see our Applicant and Candidate Privacy Policy.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!