Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Lead Data Analyst - Commercial Finance

LoopMe
London
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Data Analyst

Lead Data Analyst

Lead Data Analyst

Lead Data Analyst

Lead Data Analyst - Supporting Communities

Data Analyst

***LoopMe is one of Campaign's Best Places to Work 2023 & 2024!***

About LoopMe

Our vision is to change advertising for the better. LoopMe’s technology brings together advertisers and publishers to redefine brand advertising for the digital and mobile app ecosystem.

With a diverse client base, including leading brands, agencies and publishers, LoopMe finds solutions to industry challenges. 

The acquisition of Chartboost supercharges LoopMe’s mission, creating a globally scaled 1st party ad-tech platform built on patented AI.

What we need

We’re looking for a hands-on Lead Data Analyst who can sit at the intersection of data science, business and finance to turn high-volume data into clear commercial insight. You will play a pivotal role in turning vast and complex datasets into actionable intelligence, leveraging business intelligence tools and advanced analytics to inform strategic decision-making. Working closely with Finance leadership, Data Science, and cross-functional stakeholders, you'll build compelling dashboards, uncover financial trends, and support our AI-driven business models. This is a high-impact role for someone who thrives on solving complex problems at scale, and enjoys translating data into narratives that drive business outcomes.

As our Lead Data Analyst you will be...

  • Designing, building, and maintaining dashboards, reports, and visualisations in Looker, Tableau, and Rill to support strategic finance and commercial objectives, ensuring there is adoption of key self-service reporting across the organisation
  • Partnering with Data Science and Engineering teams to ensure consistent access to clean, structured, and scalable data; scoping and conducting A/B and multivariate tests and deliver statistically sound read-outs
  • Analysing large and complex global datasets, identifying trends, anomalies, and opportunities across financial and operational domains
  • Supporting the Finance team in forecasting, scenario modelling, and business case analysis with data-backed insights
  • Leading cross-functional analytics projects across markets, products, and business models, ensuring high analytical standards and storytelling
  • Using enablement & storytelling to distill complex findings into compelling narratives, slides and visualisations that influence senior leadership decisions
  • Promoting data partnerships that support the translation and understanding of results between Engineering, Data Science and non-technical stakeholders; document requirements, QA new data pipelines, and champion data governance

You will have

  • Experience in an analytical role working with large, granular datasets
  • Fluency in SQL for data extraction & transformation plus working knowledge of Python or R for statistical analysis are beneficial
  • Advanced experience of at least one major BI platform (Tableau, Looker, Power BI, Rill, etc.) with a portfolio of interactive dashboards
  • A proven track record running or evaluating experiments A/B tests (power analysis, lift vs. confidence, segmentation)
  • Domain exposure to Ad Tech (DSP, SSP, programmatic auctions) or financial/trading data would be preferred
  • Comfort with high-velocity event streams and real-time metrics
  • Solid grounding in classical statistics (hypothesis testing, regression, significance, p-value pitfalls)
  • Ability to translate data into plain-English insights and present to C-level audiences
  • Experience working in cloud data warehouses (Snowflake, BigQuery, Redshift) and version control (Git)

What we can offer

  • Bonus
  • Hybrid working; meaning you’ll be in our Farringdon office Tuesdays to Thursdays
  • 25 days annual leave, plus the Bank Holidays
  • 1 month work-from-anywhere
  • Health Shield, a cash-back health plan for things like dental, optical, physio and well being
  • Access to Thrive; accessible mental health support all in one app
  • LoopMe Gives Back; we have a committed and active CSR team who organise regular events to hold up our pillars of Learning, Charity, Wellbeing, Responsibility and Sustainability
  • We’ll set you up for success, providing training and career development

Want to learn more about us?

Head to our Careers page to see why we've been voted one of Campaign's Best Places to Work 2023! You can find out more about our values, initiatives, teams and benefits here(Can't see the hyperlink? Find us here https://loopme.com/contact/careers/)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.

Why Now Is the Perfect Time to Launch Your Career in Machine Learning: The UK's Intelligence Revolution

The United Kingdom stands at the epicentre of a machine learning revolution that's fundamentally transforming how we solve problems, deliver services, and unlock insights from data at unprecedented scale. From the AI-powered diagnostic systems revolutionising healthcare in Manchester to the algorithmic trading platforms driving London's financial markets, Britain's embrace of intelligent systems has created an extraordinary demand for skilled machine learning professionals that dramatically exceeds the current talent supply. If you've been seeking a career at the forefront of technological innovation or looking to position yourself in one of the most impactful sectors of the digital economy, machine learning represents an exceptional opportunity. The convergence of abundant data availability, computational power accessibility, advanced algorithmic development, and enterprise AI adoption has created perfect conditions for machine learning career success.