National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineering Manager

Deliveroo
London
1 month ago
Create job alert

This job is brought to you by Jobs/Redefined, the UK's leading over-50s age inclusive jobs board.

Machine Learning Engineering Manager

About the Role

At Deliveroo we have an outstanding data science organisation, with a mission to enable the highest quality human and machine decision-making. We work throughout the company - in product, business and platform teams - using analysis, experimentation, causal inference and machine learning techniques. We are uniquely placed to use data to help make better decisions and improve data literacy across Deliveroo.

Machine Learning (ML) Engineers work in cross-functional teams of engineers, data scientists, and product managers to build the algorithmic products that power the company. We are embedded in product teams, close to the business problems and go after some of the hardest problems. ML Engineers translate a fuzzy business problem to a concrete pipeline that we design and implement. We then work closely with the engineers to deploy our models to production and with data scientists to run experiments based on these algorithms.

ML Engineers at Deliveroo report into our Science management team, and we have a strong, active data science community with guest lecturers, a robust technical review process, a career progression framework, and plenty of opportunities to learn new things. We have career pathways for both managers and individual contributors. Our ML Engineers come from many disciplines but have excellence in common. Many are formally trained in Machine Learning, many are not.

We are looking for a Machine Learning Engineering Manager to join our management team and lead our Search & Relevance team. This team optimises the customer experience algorithmically, mainly through recommendation engines and search & ranking algorithms. The team currently has a mix of MLEs of differing levels of seniority, including mid-level, Senior and Staff.

Ideal candidates will:

  • Have experience line-managing machine learning engineers and guiding their career development.
  • Have built and deployed machine learning algorithms to production within product teams.
  • Provide technical guidance and input on the design and implementation of machine learning algorithms.
  • Have experience working with cross-functional teams and managing stakeholders throughout the business, helping them to identify opportunities and build roadmaps.
  • Bring together a group of individuals from many different backgrounds and skill sets to form a cohesive team.
  • Be comfortable working in an extremely fast, constantly changing environment.
  • Have a pragmatic, flexible approach, and most cares about achieving impact.
  • [bonus] Knowledge and experience with experimentation.

Workplace & Benefits

At Deliveroo we know that people are the heart of the business and we prioritise their welfare. Benefits differ by country, but we offer many benefits in areas including healthcare, well-being, parental leave, pensions, and generous annual leave allowances, including time off to support a charitable cause of your choice. Benefits are country-specific, please ask your recruiter for more information.

Diversity

At Deliveroo, we believe a great workplace is one that represents the world we live in and how beautifully diverse it can be. That means we have no judgement when it comes to any one of the things that make you who you are - your gender, race, sexuality, religion or a secret aversion to coriander. All you need is a passion for (most) food and a desire to be part of one of the fastest-growing businesses in a rapidly growing industry.

We are committed to diversity, equity and inclusion in all aspects of our hiring process. We recognise that some candidates may require adjustments to apply for a position or fairly participate in the interview process. If you require any adjustments, please don't hesitate to let us know. We will make every effort to provide the necessary adjustments to ensure you have an equitable opportunity to succeed.


#J-18808-Ljbffr

Related Jobs

View all jobs

Research Manager (Computer Vision/Machine Learning)

Data Engineering Manager

Product Owner

NLP Researcher

NLP Researcher

Principle Data Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.