National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer | Omics | RNA | DNA | PyTorch | Hybrid, London

Enigma
greater london, england, united kingdom
1 month ago
Applications closed

Related Jobs

View all jobs

Research Associate in Soft Robotics and Machine Learning

Data Scientist II - Machine Learning

Postdoctoral Fellow: Neurodegenerative Disease Spatial Transcriptomics and Machine Learning

Machine Learning Engineer | Cambridge | Consulting

Machine Learning Engineer | Cambridge | Consulting

Machine Learning Engineer

Machine Learning Engineer | Omics | RNA | DNA | PyTorch | Hybrid, London

While gene-editing is becoming increasingly efficient, identifying which genes to edit and how remains a significant challenge. To overcome this bottleneck, we use cutting-edge deep learning to accurately and efficiently identify high-value genetic targets for gene-editing.

Our approach draws inspiration from recent advancements in the drug discovery space, incorporating large language models (LLMs), transformers, and graph-based technologies to build a best-in-class discovery platform for plant sciences.

Team

Our team is currently composed of 12 members, including ML engineers, data engineers, and bioinformaticians. We also have a remote, part-time intern conducting ML research. The team primarily works together in person at our office in London 4 days per week.

Position

As part of the core ML team, you will help us build genomic foundation models. Your responsibilities could range from model training to data curation to evaluations. We welcome applicants with specific expertise who feel they could uniquely contribute to the training lifecycle of large, complex models.

The ideal applicant will have experience using genomic data in a machine learning context. We are particularly interested in individuals with experience working with foundational generative models of DNA or transcriptomic data. However, our modelling efforts have a strong focus on multi-modality, so experience with or interest in other data modalities (e.g., text) is a plus.

Core Responsibilities

  • Contribution to the development of proprietary -omics models, including model training and evaluation development.
  • Recreation of state-of-the-art models from the scientific literature and benchmarking against internal models and evaluations.

Additional / Development Areas

  • Model deployment to ensure flexible and scalable inference access to the wider Data Science team.
  • Collaboration with the bioinformatics team to ingest, standardize, and QC data from multiple sources (internal and external) for use in training pipelines.
  • Support for the wider ML team on model development and commercial projects.

Core

  • Postgraduate experience (MSc or PhD) in ML with a demonstrated application to a biological domain.
  • Experience building modern ML architectures (e.g., transformers, diffusers) from scratch and applying them to real biological datasets.
  • Experience working with large-scale transcriptomic datasets, ideally from non-human organisms (though not required).
  • Experience with PyTorch, huggingface transformers, and diffusers.
  • Experience working with ML accelerators.

Nice-to-have

  • Relevant publications in reputable journals or contributions to open-source projects.
  • Exposure to and interest in probabilistic ML, causal ML, or active learning.
  • Experience with distributed model training (data and model parallelism).
  • Experience working on biological data curation, including data cleansing and preprocessing of -omics datasets.
  • Exposure to cloud-based ML orchestration frameworks such as Sagemaker and Vertex AI.
  • Experience with model deployment in an enterprise setting.

For immediate consideration please send your most up to date CV to

Seniority level: Mid-Senior level

Employment type: Full-time

Job function: Information Technology

Industries: Staffing and Recruiting and Biotechnology Research


#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.