Machine Learning Engineer - Fintech – Remote

Wealth Dynamix
London
3 days ago
Create job alert

Machine Learning Engineer - Fintech – Remote

Machine Learning Engineerwanted as our team is growing fast!

Calling highly motivated, bright candidates who are looking for a career at an exciting award winning FinTech firm!

Company: Wealth Dynamix

Role: Machine Learning Engineer

Location: London

Start Date: June / July 2025

Would you like to join one of the fastest growing FinTech firms in Europe? We are looking for an analytical self-starter with experience in deploying AI ? ML models in the capacity of a Data Engineer. If you are passionate about digital transformation and keen to learn about delivering the market leading Client Lifecycle Managing solution to the Wealth Management industry, apply now!

Who are we?

  • Wealth Dynamix helps to relieve the burden of client management issues for wealth management and private banking firms with innovative technology.
  • We provide Relationship Managers with a multi-award winning digital Client Lifecycle Management (CLM) platform, offering 360-degree access to their client.
  • We are a global leader in end-to-end CLM, Wealth Dynamix has offices and clients in three continents with headquarters in the UK.

What is the role?

This role is geared toward building internal ML tooling capabilities and bringing LLM/NLP-based features into production, ensuring they are scalable, reliable, and tightly integrated within our on premise and SaaS platform.

This is a deployment-first role, for someone who excels at data and model pipeline engineering, thrives in a collaborative cross-functional team, and wants to grow while gaining exposure to innovative tooling in the LLM and MLOps space

Main Purpose of Role

LLM/NLP Production Engineering

  • Build and maintain scalable, production-ready pipelines for Natural Language Processing and Large Language Model (LLM) features.
  • Package and deploy inference services for ML models and prompt-based LLM workflows using containerised services.
  • Ensure reliable model integration across real-time APIs and batch processing systems.

Pipeline Automation & MLOps

  • Use Apache Airflow (or similar) to orchestrate ETL and ML workflows.
  • Leverage MLflow or other MLOps tools to manage model lifecycle tracking, reproducibility, and deployment.
  • Create and manage robust CI/CD pipelines tailored for ML use cases

Infrastructure & Monitoring

  • Deploy containerised services using Docker and Kubernetes, optimised for cloud deployment (Azure preferred).
  • Implement model and pipeline monitoring using tools such as Prometheus, Grafana, or Datadog, ensuring performance and observability.
  • Collaborate with DevOps to maintain and improve infrastructure scalability, reliability, and cost-efficiency.
  • Design, build and maintain internal ML tools to streamline model development, training, deployment and monitoring

Collaboration & Innovation

  • Work closely with data scientists to productionise prototypes into scalable systems.
  • Participate in architectural decisions for LLMOps and NLP-driven components of the platform.
  • Stay engaged with the latest developments in model orchestration, LLMOps, and cloud-native ML infrastructure.
  • Ensure the security of systems, data, and people by following company security policies, reporting vulnerabilities, and maintaining a secure work environment across all settings.

Why should you apply?

  • This is a fantastic opportunity to work in a growing FinTech environment with excellent career progression available.
  • With a global client base the role offers an opportunity to experience a wide variety of digital transformation projects – each with their own unique requirements and opportunities.
  • We take career progression seriously, with investment into the WDX Academy for new and existing employee learning and development.
  • You will have the flexibility to work from home, in the office or remotely.

Who is best suited to this role?

  • 2–3 years of experience in ML engineering or MLOps / LLMOps.
  • Strong Python programming skills for data manipulation and pipeline development.
  • Hands-on experience with containerisation using Docker and Kubernetes.
  • Proven experience deploying ML models into production, ideally in real-time or SaaS environments.
  • Familiarity with Airflow, MLflow, and modern MLOps/LLMOps tooling.
  • Practical experience with cloud platforms, preferably Microsoft Azure.
  • Strong problem-solving skills, attention to detail, and the willingness to get things done.
  • Excellent collaboration and communication skills; comfortable working across technical and product teams.
  • Preferred Strengths
  • Experience with LLMOps frameworks (e.g., LangChain, vector databases, retrieval-augmented generation).
  • Experience with ML-specific CI/CD pipelines and model governance best practices.
  • Familiarity with monitoring and observability tools like Jaeger, Prometheus, Grafana, or Datadog.
  • Experience working in startups or fast-paced teams, balancing rapid iteration with production-grade reliability.

We believe we offer career defining opportunities and are on a journey that will build awesome memories in a diverse and inclusive culture. If you are looking for more than just a job, get in touch.


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer - Bioimage Data & Agentic Systems

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer - Generative AI

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Mistakes Candidates Make When Applying for Machine-Learning Jobs—And How to Avoid Them

Landing a machine-learning job in the UK is competitive. Learn the 10 biggest mistakes applicants make—plus tested fixes, expert resources and live links that will help you secure your next ML role. Introduction From fintechs in London’s Square Mile to advanced-research hubs in Cambridge, demand for machine-learning talent is exploding. Job boards such as MachineLearningJobs.co.uk list new vacancies daily, and LinkedIn shows more than 10,000 open ML roles across the UK right now. Yet hiring managers still reject most CVs long before interview—often for avoidable errors. Below are the ten most common mistakes we see, each paired with a practical fix and a live resource link so you can dive deeper.

Top 10 Best UK Universities for Machine Learning Degrees (2025 Guide)

Explore ten UK universities that deliver world-class machine-learning degrees in 2025. Compare entry requirements, course content, research strength and industry links to find the programme that fits your goals. Machine learning (ML) has shifted from academic curiosity to the engine powering everything from personalised medicine to autonomous vehicles. UK universities have long been pioneers in the field, and their programmes now blend rigorous theory with hands-on practice on industrial-scale datasets. Below, we highlight ten institutions whose undergraduate or postgraduate pathways focus squarely on machine learning. League tables move each year, but these universities consistently excel in teaching, research and collaboration with industry.

How to Write a Winning Cover Letter for Machine Learning Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for machine learning jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the machine learning sector. When applying for a machine learning job, your cover letter is a vital part of your application. Machine learning is an exciting and rapidly evolving field, and your cover letter offers the chance to demonstrate your technical expertise, passion for AI, and your ability to apply machine learning techniques to solve real-world problems. Writing a cover letter for machine learning roles may feel intimidating, but by following a clear structure, you can showcase your strengths effectively. Whether you're just entering the field, transitioning from another role, or looking to advance your career in machine learning, this article will guide you through a proven four-paragraph structure. We’ll provide practical tips and sample lines to help you create a compelling cover letter that catches the attention of hiring managers in the machine learning job market.