National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer

Faculty
Greater London
5 months ago
Create job alert

About Faculty

At Faculty, we transform organisational performance through safe, impactful and human-centric AI.

With a decade of experience, we provide over 300 global customers withsoftware,bespoke AI consultancy, and Fellows from our award winningFellowship programme.

Our expert team brings together leaders from across government, academia and global tech giants to solve the biggest challenges in applied AI.

Should you join us, you’ll have the chance to work with, and learn from, some of the brilliant minds who are bringing Frontier AI to the frontlines of the world.

Hybrid Working Arrangement

We operate a hybrid way of working, meaning that you'll split your time across client location, Faculty's Old Street office and working from home depending on the needs of the project. For this role, you can expect to be client-side for up to three days per week at times and working either from home or our Old Street office for the rest of your time.

About the Role

You will design, build, and deploy production-grade software, infrastructure, and MLOps systems that leverage machine learning. The work you do will help our customers solve a broad range of high-impact problems in our Defence team - examples of which can be foundhere.

Because of the potential to work with our clients in the National Security space, you will need to be eligible for Security Clearance, details of which are outlined when you click through to apply.

What You'll Be Doing

You are engineering-focused, with a keen interest and working knowledge of operationalised machine learning. You have a desire to take cutting-edge ML applications into the real world. You will develop new methodologies and champion best practices for managing AI systems deployed at scale, with regard to technical, ethical and practical requirements. You will support both technical, and non-technical stakeholders, to deploy ML to solve real-world problems.

Our Machine Learning Engineers are responsible for the engineering aspects of our customer delivery projects. As a Machine Learning Engineer, you’ll be essential to helping us achieve that goal by:

  • Building software and infrastructure that leverages Machine Learning;
  • Creating reusable, scalable tools to enable better delivery of ML systems;
  • Working with our customers to help understand their needs;
  • Working with data scientists and engineers to develop best practices and new technologies;
  • Implementing and developing Faculty’s view on what it means to operationalise ML software.

As a rapidly growing organisation, roles are dynamic and subject to change. Your role will evolve alongside business needs, but you can expect your key responsibilities to include:

  • Working in cross-functional teams of engineers, data scientists, designers and managers to deliver technically sophisticated, high-impact systems;
  • Working with senior engineers to scope projects and design systems;
  • Providing technical expertise to our customers;
  • Technical Delivery.

Who We're Looking For

You can view our company principleshere. We look for individuals who share these principles and our excitement to help our customers reap the rewards of AI responsibly.

We like people who combine expertise and ambition with optimism -- who are interested in changing the world for the better -- and have the drive and intelligence to make it happen. If you’re the right candidate for us, you probably:

  • Think scientifically, even if you’re not a scientist - you test assumptions, seek evidence and are always looking for opportunities to improve the way we do things;
  • Love finding new ways to solve old problems - when it comes to your work and professional development, you don’t believe in ‘good enough’. You always seek new ways to solve old challenges;
  • Are pragmatic and outcome-focused - you know how to balance the big picture with the little details and know a great idea is useless if it can’t be executed in the real world.

To succeed in this role, you’ll need the following - these are illustrative requirements and we don’t expect all applicants to have experience in everything (70% is a rough guide):

  • Understanding of, and experience with the full machine learning lifecycle;
  • Working with Data Scientists to deploy trained machine learning models into production environments;
  • Working with a range of models developed using common frameworks such as Scikit-learn, TensorFlow, or PyTorch;
  • Experience with software engineering best practices and developing applications in Python;
  • Technical experience of cloud architecture, security, deployment, and open-source tools ideally with one of the 3 major cloud providers (AWS, GCP or Azure);
  • Demonstrable experience with containers and specifically Docker and Kubernetes;
  • An understanding of the core concepts of probability and statistics and familiarity with common supervised and unsupervised learning techniques;
  • Demonstrable experience of managing/mentoring more junior members of the team;
  • Outstanding verbal and written communication;
  • Excitement about working in a dynamic role with the autonomy and freedom you need to take ownership of problems and see them through to execution.

What we can offer you:

The Faculty team is diverse and distinctive, and we all come from different personal, professional and organisational backgrounds. We all have one thing in common: we are driven by a deep intellectual curiosity that powers us forward each day.

Faculty is the professional challenge of a lifetime. You’ll be surrounded by an impressive group of brilliant minds working to achieve our collective goals.

Our consultants, product developers, business development specialists, operations professionals and more all bring something unique to Faculty, and you’ll learn something new from everyone you meet.


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer - Bioimage Data & Agentic Systems

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.