National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer

Stepney
3 weeks ago
Create job alert

Machine Learning Engineer
Up to £70K DOE
Hybrid – London (2 days per week onsite)

My client is looking for a Junior to Mid-Level Machine Learning Engineer to take ownership of the infrastructure and services that power machine learning systems in production. In this role, you’ll act as a bridge between data science and engineering, ensuring robust, scalable, and low-latency deployment of models that serve millions of requests per day.

You’ll be responsible for building and maintaining Python microservices, leveraging modern DevOps practices and tooling to support rapid, reliable delivery. With sub-second response times and a high-throughput environment (2M+ requests/day), this is a high-impact role that blends software engineering, DevOps, and MLOps at scale.

Key Responsibilities

  • Design, develop, and maintain Python microservices for serving machine learning models

  • Collaborate with Data Scientists to deploy, monitor, and support models in production

  • Implement and manage CI/CD pipelines using Azure DevOps

  • Support containerized deployments with Kubernetes and Docker

  • Ensure high performance, fault-tolerant, and secure infrastructure

  • Promote code quality, testing standards, and scalable architecture

  • Proactively identify infrastructure improvements and lead implementation

    Requirements

  • 2 + years of experience in Software Engineering, DevOps, or Data Engineering

  • Strong Python skills with experience in microservices and web frameworks

  • Solid understanding of CI/CD, ideally using Azure DevOps

  • Familiarity with containerized environments (Docker/Kubernetes)

  • Exposure to Data Science or Machine Learning concepts

  • Experience operating in high-throughput environments

  • Independent, curious, and driven by continuous improvement

  • Effective communicator with the ability to bridge data science and engineering teams

    Why Join?

    You’ll be joining a company with strong business performance and ambitious plans for data-driven growth. This is a rare opportunity to take technical ownership of real-time machine learning infrastructure and play a key role in scaling systems that make an immediate business impact

Related Jobs

View all jobs

Machine Learning Engineer - Bioimage Data & Agentic Systems

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.