National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer

Hinckley
2 weeks ago
Create job alert

An exceptional opportunity for a Machine Learning Engineer (with Full-Stack experience) to join an innovative market leader at the forefront of developing next-generation solutions that transform digital interactions. The role will focus on projects to leverage state-of-the-art generative AI, retrieval-augmented generation (RAG), and reasoning frameworks to build intelligent and context-aware systems.

We are seeking talented Machine Learning Engineers with full-stack software development experience to join our client's team and help shape the future of AI-powered automation. Within this dynamic role varied duties will include:

Search relevancy engineering.
Conversational AI Development: Design, train, fine-tune, and deploy LLMs with reasoning capabilities.
Retrieval-Augmented Generation (RAG): Implement, optimise, and scale RAG pipelines for effective information retrieval from structured and unstructured sources.
Model Fine-Tuning & Training: Train domain-specific models using techniques like LoRA, QLoRA, PEFT, reinforcement learning, and supervised fine-tuning (SFT).
Model Deployment & Inferencing: Optimise model serving and inference using vLLM, DeepSpeed, TensorRT, Triton, and other acceleration frameworks.
Multi-Agent Systems: Develop and integrate agentic capabilities using frameworks such as LangChain, CrewAI, AutoGen, and DSPy.
AWS Cloud & MLOps: Deploy scalable machine learning workloads on AWS using services like SageMaker, Bedrock, Lambda, S3, DynamoDB, ECS, and EKS.
End-to-End AI Product Development: Work across the full ML lifecycle, from data collection and preprocessing to model evaluation, deployment, and monitoring.
Full-Stack Integration: Develop APIs and integrate ML models into web applications using FastAPI, Flask, React, TypeScript, and Node.js.
Vector Databases & Search: Implement embeddings and retrieval mechanisms using Pinecone, Weaviate, FAISS, Milvus, ChromaDB, or OpenSearch.Required skills & experience:

3-5+ years in machine learning and software development
Proficient in Python, PyTorch or TensorFlow or Hugging Face Transformers
Experience with RAG, LLM fine-tuning, and expertise in AWS and cloud-native AI deployments.
Full-stack experience (React, TypeScript, Node.js) and API development.
Familiarity with vector search and multi-agent orchestrationApply now to join this high growth and award-winning organisation with the opportunity to be part of building the future of AI driven projects and solutions. The role offers a highly competitive salary and benefits package and will be office based in Leicestershire.

MLE(phone number removed)AM

INDAM

Related Jobs

View all jobs

Machine Learning Engineer - Bioimage Data & Agentic Systems

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.