Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer

Octopus Energy
London
1 week ago
Create job alert
Overview

Kraken is the operating system for utilities of the future. Built in-house at Octopus Energy, Kraken powers energy companies and utilities around the globe – in 10 countries and counting – licensing software to organisations such as Origin Energy in Australia and Tokyo Gas in Japan. We’re on a mission to accelerate the renewable transition and bring affordable green energy to the world.

We’ve reinvented energy products with smart, data‑driven tariffs to balance customer demand with renewable generation, and Kraken’s platform controls more than half of the grid‑scale batteries in the UK. Our platform supports engineers in the field, making energy specialists more productive with a suite of AI tools. We hire clever, curious, and self‑driven people, enabling them with modern tools and infrastructure and giving them autonomy.

Our ML team consists of ML, front‑end and back‑end engineers, enabling rapid prototyping and the deployment of innovative tools at speed.

We’ve had success using AI to improve service for customers, and we want to extend that success across the business. You’ll join a small expert team tackling the most pressing problems, whether it’s internal AI tooling to boost developer productivity or automating processes to accelerate migration for new clients. You’ll work across the product lifecycle, exploring new technologies, validating ideas with stakeholders, and rapidly prototyping. Your work will define the pattern for AI success at Kraken.

What you’ll do
  • Work with a high performance team of LLM, MLOps, backend and frontend engineers
  • Tackle the biggest problems facing the company, with the freedom to define novel approaches
  • Help LLMs understand and interact with Kraken’s codebase, leveraging techniques such as GraphRAG, agentic workflows, finetuning and reinforcement learning
  • Apply classic ML and NLP techniques to complement LLM systems
  • Act as a centre of excellence for AI across the business, consulting teams on LLM usage and lifting product quality
  • Stay at the forefront of AI advancements and their technical implications for the team and business
What you’ll need
  • Curious and self‑driven – the ability to make decisions independently and solve novel problems
  • 1+ year of production experience with LLMs, plus deep technical understanding of techniques to adapt LLMs to domains (e.g., advanced RAG, tool calling, finetuning, RL)
  • 3+ years of experience with traditional ML techniques, including training and deploying non‑LLM models and monitoring production models with feedback loops
  • A keen interest in Gen AI and classic ML, with the ability to apply trends to real‑world objectives
Nice to have
  • Experience working with large codebases and collaborating with multiple engineering teams in large companies
  • Experience with diverse LLM deployment methods (e.g., hosted finetuned models via services like Bedrock, or engines like vLLM)
Job details
  • Seniority level: Not Applicable
  • Employment type: Full-time
  • Job function: Engineering and Information Technology
  • Industries: Utilities and Environmental Services
Equal opportunity and data privacy

We are an equal opportunity employer. We do not discriminate on the basis of protected attributes. For privacy information related to applications, refer to our Applicant and Candidate Privacy Notice and related notices on our website.


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer (LLMs & AI Agents)

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.

Why the UK Could Be the World’s Next Machine Learning Jobs Hub

Machine learning (ML) is becoming essential to industries across the globe—from finance and healthcare to retail, logistics, defence, and the public sector. Its ability to uncover patterns in data, make predictions, drive automation, and increase operational efficiency has made it one of the most in-demand skill sets in the technology world. In the UK, machine learning roles—from engineers to researchers, product managers to analysts—are increasingly central to innovation. Universities are expanding ML programmes, enterprises are scaling ML deployments, and startups are offering applied ML solutions. All signs point toward a surging need for professionals skilled in modelling, algorithms, data pipelines, and AI systems. This article explores why the United Kingdom is exceptionally well positioned to become a global machine learning jobs hub. It examines the current landscape, strengths, career paths, sector-specific demand, challenges, and what must happen for this vision to become reality.