Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer

Octopus Energy
London
2 weeks ago
Create job alert
Overview

Kraken is the operating system for utilities of the future. Built in-house at Octopus Energy, Kraken powers energy companies and utilities around the globe – in 10 countries and counting – licensing software to organisations such as Origin Energy in Australia and Tokyo Gas in Japan. We’re on a mission to accelerate the renewable transition and bring affordable green energy to the world.

We’ve reinvented energy products with smart, data‑driven tariffs to balance customer demand with renewable generation, and Kraken’s platform controls more than half of the grid‑scale batteries in the UK. Our platform supports engineers in the field, making energy specialists more productive with a suite of AI tools. We hire clever, curious, and self‑driven people, enabling them with modern tools and infrastructure and giving them autonomy.

Our ML team consists of ML, front‑end and back‑end engineers, enabling rapid prototyping and the deployment of innovative tools at speed.

We’ve had success using AI to improve service for customers, and we want to extend that success across the business. You’ll join a small expert team tackling the most pressing problems, whether it’s internal AI tooling to boost developer productivity or automating processes to accelerate migration for new clients. You’ll work across the product lifecycle, exploring new technologies, validating ideas with stakeholders, and rapidly prototyping. Your work will define the pattern for AI success at Kraken.

What you’ll do
  • Work with a high performance team of LLM, MLOps, backend and frontend engineers
  • Tackle the biggest problems facing the company, with the freedom to define novel approaches
  • Help LLMs understand and interact with Kraken’s codebase, leveraging techniques such as GraphRAG, agentic workflows, finetuning and reinforcement learning
  • Apply classic ML and NLP techniques to complement LLM systems
  • Act as a centre of excellence for AI across the business, consulting teams on LLM usage and lifting product quality
  • Stay at the forefront of AI advancements and their technical implications for the team and business
What you’ll need
  • Curious and self‑driven – the ability to make decisions independently and solve novel problems
  • 1+ year of production experience with LLMs, plus deep technical understanding of techniques to adapt LLMs to domains (e.g., advanced RAG, tool calling, finetuning, RL)
  • 3+ years of experience with traditional ML techniques, including training and deploying non‑LLM models and monitoring production models with feedback loops
  • A keen interest in Gen AI and classic ML, with the ability to apply trends to real‑world objectives
Nice to have
  • Experience working with large codebases and collaborating with multiple engineering teams in large companies
  • Experience with diverse LLM deployment methods (e.g., hosted finetuned models via services like Bedrock, or engines like vLLM)
Job details
  • Seniority level: Not Applicable
  • Employment type: Full-time
  • Job function: Engineering and Information Technology
  • Industries: Utilities and Environmental Services
Equal opportunity and data privacy

We are an equal opportunity employer. We do not discriminate on the basis of protected attributes. For privacy information related to applications, refer to our Applicant and Candidate Privacy Notice and related notices on our website.


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.