Machine Learning Engineer

IMC
London
1 week ago
Create job alert

As a Machine Learning Engineer, you will play a pivotal role in building systems that drive the training and deployment of large-scale ML models across our global operations. Youll collaborate with leading researchers, hardware experts, and software engineers to build robust solutions that maximize the potential of GPU acceleration, distributed computing, and the latest open-source tools. Your work will influence our trading strategies by accelerating experimentation cycles that foster continuous innovation and refinement.

This is a unique opportunity to solve problems at the intersection of advanced machine learning and trading, where your contributions will shape the future of IMCs technology and trading capabilities.

Your Core Responsibilities:

  • Develop large-scale distributed training pipelines to manage datasets and complex models
  • Build and optimize low-latency inference pipelines, ensuring models deliver real-time predictions in production systems
  • Develop libraries to improve the performance of machine learning frameworks
  • Maximize performance in training and inference using GPU hardware and acceleration libraries
  • Design scalable model frameworks capable of handling high-volume trading data and delivering real-time, high-accuracy predictions
  • Collaborate with quantitative researchers to automate ML experiments, hyperparameter tuning, and model retraining
  • Partner with HPC specialists to optimize workflows, improve training speed, and reduce costs
  • Evaluate and roll out third-party tools to enhance model development, training, and inference capabilities
  • Dig into the internals of open-source ML tools to extend their capabilities and improve performance

Your Skills and Experience:

  • 5+ years of experience in machine learning with a focus on training or inference systems
  • Hands-on experience with real-time, low-latency ML pipelines in high-performance environments is a strong plus
  • Strong engineering skills, including Python, CUDA, or C++
  • Knowledge of machine learning frameworks such as PyTorch, TensorFlow, or JAX
  • Proficiency in GPU programming for training and inference acceleration (e.g., CuDNN, TensorRT)
  • Experience with distributed training for scaling ML workloads (e.g., Horovod, NCCL)
  • Exposure to cloud platforms and orchestration tools
  • A track record of contributing to open-source projects in machine learning, data science, or distributed systems is a plus

The Base Salary range for the role is included below. Base salary is only one component of total compensation; all full-time, permanent positions are eligible for a discretionary bonus and benefits, including paid leave and insurance. Please visit Benefits - US | IMC Trading for more comprehensive information.

Salary Range:

$175,000-$250,000 USD

About Us

IMC is a leading global trading firm powered by a cutting-edge research environment and a world-class technology backbone. Since 1989, weve been a stabilizing force in financial markets, providing essential liquidity upon which market participants depend. Across our offices in the US, Europe, and Asia Pacific, our talented quant researchers, engineers, traders, and business operations professionals are united by our uniquely collaborative, high-performance culture, and our commitment to giving back. From entering dynamic new markets to embracing disruptive technologies, and from developing an innovative research environment to diversifying our trading strategies, we dare to continuously innovate and collaborate to succeed.

J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer( Real time Data Science Applications)

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.