National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer, App Ads

reddit
remote, united kingdom
10 months ago
Create job alert

Reddit is a community of communities. It’s built on shared interests, passion, and trust and is home to the most open and authentic conversations on the internet. Every day, Reddit users submit, vote, and comment on the topics they care most about. With ,+ active communities and approximately M+ daily active unique visitors, Reddit is one of the internet’s largest sources of information. For more information, visit .

We’re evolving and continuing our mission to bring community, belonging, and empowerment to everyone in the world. Providing a delightful and relevant experience to our users applies to our Ads like all of our offerings, and we’re excited to build a product that is best-in-class for our users and advertisers. The year ahead is a busy one - join us! 

The App Ads Team is entrusted with the development and maintenance of a diverse set of Machine Learning models that are responsible for predictions regarding user conversions after engaging with Reddit. The creation and enhancement of these models plays a crucial role in our organization's efforts to optimize advertising effectiveness and drive business growth. We are looking for a motivated engineer that will help us advance our vision. As a diverse group of software engineers, product managers, data scientists, and ads experts, we are excited for you to join our team!

Your Responsibilities:

Develop advanced and scalable deep learning models using cutting-edge techniques for critical machine learning tasks within the app conversions modeling domain. Design and implement innovative strategies for signal loss mitigation, ensuring the accuracy and reliability of predictions in the presence of incomplete or noisy data. Research, implement, test, and launch new model architectures including deep neural networks with advanced pooling and feature interaction architectures. Systematic feature engineering works to convert all kinds of raw data in Reddit (dense & sparse, behavior & content, etc) into features with various FE technologies such as aggregation, embedding, sub models, etc. Be a mentor and cross-functional advocate for the team. Contribute meaningfully to team strategy. We give everyone a seat at the table and encourage active participation in planning for the future!

Who You Might Be:

+ years of experience with industry-level deep learning models. + years of experience with mainstream ML frameworks (such as Tensorflow and Pytorch). + years of end-to-end experience of training, evaluating, testing, and deploying industry-level models. + years of experience of orchestrating complicated data generation pipelines on large-scale datasets. Experience with ads domain and conversion modeling is a plus. Experience with recommendation systems is a plus.

Benefits:

Pension Scheme Private Medical and Dental Scheme Life Assurance, Income Protection Workspace benefit for your home office  Personal & Professional development funds Family Planning Support  Commuter Benefits Flexible Vacation & Reddit Global Days Off

This role is remote within the Netherlands or the UK

Li-remote

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer - Bioimage Data & Agentic Systems

Senior Machine Learning Engineer

Research Engineer, Data (Foundational Research, Machine Learning)

Senior Research Software Engineer & Data Scientist (INTERNAL)

data engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.