National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Computer Vision Engineer

Snap Inc.
London
3 days ago
Create job alert

is a technology company. We believe the camera presents the greatest opportunity to improve the way people live and communicate. Snap contributes to human progress by empowering people to express themselves, live in the moment, learn about the world, and have fun together. The Company’s three core products are , a visual messaging app that enhances your relationships with friends, family, and the world; , an augmented reality platform that powers AR across Snapchat and other services; and its AR glasses, .

is a technology company. We believe the camera presents the greatest opportunity to improve the way people live and communicate. Snap contributes to human progress by empowering people to express themselves, live in the moment, learn about the world, and have fun together. The Company’s three core products are , a visual messaging app that enhances your relationships with friends, family, and the world; , an augmented reality platform that powers AR across Snapchat and other services; and its AR glasses, .

The Spectacles team is pushing the boundaries of technology to bring people closer together in the real world. Our fifth-generation Spectacles, powered by Snap OS, showcase how standalone, see-through AR glasses make playing, learning, and working better together.

The Spectacles team is looking for a Machine Learning Engineer to join the AR team in London, UK! 

In this role, you will be working on state of the art machine learning and computer vision technologies to straddle the boundaries between the real and the virtual world with the next generation of Snap’s wearable computing devices. Working from our London office, you will be collaborating closely with other Spectacles software and hardware teams around the world.

What you’ll do:

Develop and productise novel technologies for the next generation of wearable AR devices.

Explore and advance state-of-the-art machine learning and computer vision algorithms.

Develop and deploy machine learning models.

Work together with our cross-functional engineering and research teams in computer vision, machine learning and AR engineering.

Knowledge, Skills & Abilities:

Deep understanding of machine learning principles, solutions and frameworks to develop networks and models for computer vision tasks

Ability to understand, debug and improve existing code as well as develop new algorithms using advanced computer vision and machine learning techniques.

Strong communications and interpersonal skills.

A genuine passion for learning new things and helping colleagues improve.

Minimum Qualifications

Bachelor's Degree in a relevant technical field such as computer science or equivalent years of practical work experience

Extensive experience post-Bachelor’s computer vision/machine learning experience; or Master’s degree in a technical field + extensive experience of post-grad computer vision/machine learning experience; or PhD in a relevant technical field + 4 years of post-grad computer vision/machine learning experience

Experience in developing machine learning models for at least one of the following areas: geometric scene understanding, semantic scene reconstruction, neural scene representation, monocular depth estimation, visual localisation

Preferred Qualifications

Msc/PhD in related field (Computer Vision, Machine Learning)

Experience in integrating Machine Learning models into Augmented Reality solutions

Experience in neural network optimization (pruning, quantization, distillation) to deploy efficient models to resource-constrained devices.

Experience in geometric computer vision such as SLAM, VIO, Tracking, multi-view 3D reconstruction, Depth Estimation etc.

Experience with software development in C++

If you have a disability or special need that requires accommodation, please don’t be shy and provide us some .

"Default Together" Policy at Snap: At Snap Inc. we believe that being together in person helps us build our culture faster, reinforce our values, and serve our community, customers and partners better through dynamic collaboration. To reflect this, we practice a “default together” approach and expect our team members to work in an office 4+ days per week. 

At Snap, we believe that having a team of diverse backgrounds and voices working together will enable us to create innovative products that improve the way people live and communicate. Snap is proud to be an equal opportunity employer, and committed to providing employment opportunities regardless of race, religious creed, color, national origin, ancestry, physical disability, mental disability, medical condition, genetic information, marital status, sex, gender, gender identity, gender expression, pregnancy, childbirth and breastfeeding, age, sexual orientation, military or veteran status, or any other protected classification, in accordance with applicable federal, state, and local laws. EOE, including disability/vets.

: Snap Inc. is its own community, so we’ve got your back! We do our best to make sure you and your loved ones have everything you need to be happy and healthy, on your own terms. Our benefits are built around your needs and include paid parental leave, comprehensive medical coverage, emotional and mental health support programs, and compensation packages that let you share in Snap’s long-term success!

Related Jobs

View all jobs

Computer Vision Engineer

Computer Vision Engineer

Computer Vision Engineer

Computer Vision Software Engineer

Senior Computer Vision Engineer

Senior Computer Vision Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.