National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Lead Data Scientist

Xcede
Nottingham
1 week ago
Create job alert

Lead Data Scientist

Surrey office, x1 day every two weeks.


A well-established, product-led business is looking for a Lead Data Scientist to spearhead innovation and drive measurable value through advanced machine learning, experimentation, and the development of production-grade models.


Sitting within a cross-functional data team, this is a hands-on leadership role with the autonomy to shape the modelling roadmap, contribute to R&D strategy, and influence pricing and risk decisions across multiple business lines. You’ll manage a small team of data scientists, guiding them through delivery while remaining actively involved in technical implementation and experimentation.


This is a unique opportunity for someone passionate about building machine learning systems that go beyond prototypes — models that deliver real-world commercial outcomes in a data-rich, regulated environment.


Key Responsibilities

  • Lead a high-performing team of data scientists to deliver cross-functional, impactful AI/ML initiatives
  • Design and implement predictive models and machine learning solutions for core business areas
  • Build and productionise models in collaboration with data engineers and platform teams
  • Apply advanced statistical techniques to extract insights and guide product and pricing strategies
  • Work closely with stakeholders to understand requirements, define modelling goals, and demonstrate business value
  • Evaluate vendor data sources, assess economic and technical feasibility, and lead test-and-learn initiatives
  • Contribute to the modelling roadmap, experimentation frameworks, and internal data science tooling
  • Produce clean, maintainable, version-controlled code and refactor solutions into reusable libraries and APIs
  • Coach junior team members and promote best practices across the wider data and analytics community


Requirements


  • Ideally, 6+ years of hands-on experience applying data science techniques in commercial or research-led environments, delivering clear business outcomes
  • Advanced academic background (MSc or PhD) in a technical or quantitative field such as Machine Learning, Computer Science, or Statistics
  • Strong programming ability in Python (data science ecosystem) and SQL, with proven experience handling large, complex datasets
  • Solid track record of building, validating, and deploying machine learning models into real-world systems
  • Practical experience designing experiments, selecting evaluation metrics, and applying multivariate testing frameworks
  • Leadership mindset — you’ve mentored or managed data science colleagues or helped steer technical decisions in a collaborative team
  • Comfortable with version control (Git) and familiar with engineering workflows like CI/CD and containerised environments
  • Skilled at working with both structured and unstructured data to unlock insights and power models
  • Hands-on experience with Databricks, Apache Spark, or similar tools used in large-scale data processing
  • Exposure to machine learning model deployment using APIs or lightweight serving frameworks like Flask or Keras
  • Familiarity with geospatial data would be a great bonus!


If this role interests you and you would like to learn more, please apply here or contact us via (feel free to include a CV for review).

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist - Reigate

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.

Top 10 Mistakes Candidates Make When Applying for Machine-Learning Jobs—And How to Avoid Them

Landing a machine-learning job in the UK is competitive. Learn the 10 biggest mistakes applicants make—plus tested fixes, expert resources and live links that will help you secure your next ML role. Introduction From fintechs in London’s Square Mile to advanced-research hubs in Cambridge, demand for machine-learning talent is exploding. Job boards such as MachineLearningJobs.co.uk list new vacancies daily, and LinkedIn shows more than 10,000 open ML roles across the UK right now. Yet hiring managers still reject most CVs long before interview—often for avoidable errors. Below are the ten most common mistakes we see, each paired with a practical fix and a live resource link so you can dive deeper.