Lead Data Analyst

Jaguar Land Rover
Gaydon
1 year ago
Applications closed

Related Jobs

View all jobs

Lead Data Analyst

Lead Data Analyst

Lead Data Analyst — Azure, Power BI & Data Modelling

Data Analyst – Insights Leader for Student Life (Flexible)

Senior Pensions Projects Lead & Data Analyst

Principal Data Analyst

Gaydon

Product Engineering at JLR is centred on innovation and creativity. From advanced driver assistance systems to developing the future of electric propulsion, the opportunities to create exceptional experiences for the future of motoring are wide-ranging. You'll work alongside industry experts to drive product strategy, manage programs, analyse performance, and lead transformation initiatives. Exceptional careers that bring world-renowned vehicles to life start here.

WHAT TO EXPECT

Be at the forefront of innovation within our Data Analytics Chapter as we aim to empower engineers to make data-driven decisions by providing accessible, reliable data and delivering insightful analytics to squads across the organisation. The team develops methods and tools that leverage the data collected off-fleet and customer vehicles, supporting improvements to Body/Chassis features and systems that will ensure an expectational experience for JLR’s customers.

In this role, you will work with engineering teams in Body Chassis Engineering to understand their key questions and identify problem statements that could be solved using advanced analytics, machine learning, or the automation of processes. You will identify, analyse and interpret trends in complex data sets and utilise modelling techniques, to generate insights into our systems and how customers operate their vehicles.

Key Accountabilities and Responsibilties

Understand data requirements of stakeholders, including problem-scoping Use statistical techniques to deliver robust and accurate results, considering variable data quality, and communicate conclusions and insights to stakeholders Create data visualisations and dashboards utilising tools such as Tableau Ensure customer privacy is protected at every stage of data analysis Contribute to knowledge sharing and the continual improvement of the team’s technical capabilities, and collaborate with the wider JLR data community to ensure the team works with the latest technology, techniques, and best practices

WHAT YOU’LL NEED

Extensive experience in Data Engineering, Analysis, or Science and/or within an Engineering field, particularly Automotive Practical application of SQL or Python, with knowledge of cloud computing platforms such as GCP or AWS Excellent level of ability to structure, analyse and interpret data Good understanding of data visualisation principles, with experience in using tools such as Tableau, Looker, Power BI, etc. Understanding of advanced analytics techniques (statistical analysis/modelling, experiment design, optimisation)

Creating Modern Luxury requires a modern approach to work. At JLR, hybrid working is a voluntary, non-contractual arrangement providing employees more choice and flexibility around how, when and where they work. Some roles require more on-site work, but details of this can be discussed with the hiring manager during the interview stage.

We work hard to nurture a culture that is inclusive and welcoming to all. We understand candidates may require reasonable adjustments during the recruitment process. Please discuss these with your recruiter so we can accommodate your needs. 

Applicants from all backgrounds are welcome. If you’re unsure that you meet the full criteria of a role – but you're interested in where it could take you – we still encourage you to apply. We believe in people's ability to grow and develop within their role – it’s what makes living the exceptional with soul possible.

JLR is committed to equal opportunity for all.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.