Lead Data Analyst

Jaguar Land Rover
Gaydon
5 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Analyst (Financial)

Lead Reporting and Data Analyst

Lead Reporting and Data Analyst

Senior Marketing Data Analyst

Senior Marketing Data Analyst

Data Analyst Lead - AdTech

Gaydon

Product Engineering at JLR is centred on innovation and creativity. From advanced driver assistance systems to developing the future of electric propulsion, the opportunities to create exceptional experiences for the future of motoring are wide-ranging. You'll work alongside industry experts to drive product strategy, manage programs, analyse performance, and lead transformation initiatives. Exceptional careers that bring world-renowned vehicles to life start here.

WHAT TO EXPECT

Be at the forefront of innovation within our Data Analytics Chapter as we aim to empower engineers to make data-driven decisions by providing accessible, reliable data and delivering insightful analytics to squads across the organisation. The team develops methods and tools that leverage the data collected off-fleet and customer vehicles, supporting improvements to Body/Chassis features and systems that will ensure an expectational experience for JLR’s customers.

In this role, you will work with engineering teams in Body Chassis Engineering to understand their key questions and identify problem statements that could be solved using advanced analytics, machine learning, or the automation of processes. You will identify, analyse and interpret trends in complex data sets and utilise modelling techniques, to generate insights into our systems and how customers operate their vehicles.

Key Accountabilities and Responsibilties

Understand data requirements of stakeholders, including problem-scoping Use statistical techniques to deliver robust and accurate results, considering variable data quality, and communicate conclusions and insights to stakeholders Create data visualisations and dashboards utilising tools such as Tableau Ensure customer privacy is protected at every stage of data analysis Contribute to knowledge sharing and the continual improvement of the team’s technical capabilities, and collaborate with the wider JLR data community to ensure the team works with the latest technology, techniques, and best practices

WHAT YOU’LL NEED

Extensive experience in Data Engineering, Analysis, or Science and/or within an Engineering field, particularly Automotive Practical application of SQL or Python, with knowledge of cloud computing platforms such as GCP or AWS Excellent level of ability to structure, analyse and interpret data Good understanding of data visualisation principles, with experience in using tools such as Tableau, Looker, Power BI, etc. Understanding of advanced analytics techniques (statistical analysis/modelling, experiment design, optimisation)

Creating Modern Luxury requires a modern approach to work. At JLR, hybrid working is a voluntary, non-contractual arrangement providing employees more choice and flexibility around how, when and where they work. Some roles require more on-site work, but details of this can be discussed with the hiring manager during the interview stage.

We work hard to nurture a culture that is inclusive and welcoming to all. We understand candidates may require reasonable adjustments during the recruitment process. Please discuss these with your recruiter so we can accommodate your needs. 

Applicants from all backgrounds are welcome. If you’re unsure that you meet the full criteria of a role – but you're interested in where it could take you – we still encourage you to apply. We believe in people's ability to grow and develop within their role – it’s what makes living the exceptional with soul possible.

JLR is committed to equal opportunity for all.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.