Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Backend Engineer

Firenze
Manchester
9 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer - Data/Backend

Machine Learning Engineering Manager - Personalization

Senior Lead Machine Learning Scientist

Senior Lead Machine Learning Scientist Cardiff, London or Remote (UK)

Senior Lead Machine Learning Scientist Cardiff, London or Remote (UK)

Machine Learning Engineering Manager – Personalization Spotify

Are you a backend engineer withAWS experienceand a deep understanding ofmicroservices architecture? Are you ready to bring your expertise to a dynamic, high-potential fintech venture? If you're passionate about building highly scalable, secure, reliable and well–architected backend solutions, and making a tangible impact, this is your opportunity to join us as our Lead Backend Engineer


About Us:

We’re one of the mostexciting new fintech companies in the UK.Firenze is fast emerging as the leading Lombard lending offering in the market due to our unique approach and development ofa cutting-edge platform. We’re on a mission to unlock access to one of the last remaining solutions that’s only available to the wealthy through private banks. We’rebringing lending secured against your investmentsto the masses. 

Led by a successful second time founder and a team of leading experts across technology and finance, Firenze is backed by some of the world’s most prominent investors. These include many of the UK’s top fintech angels and the scout funds of tier one VCs.


Role Overview:

As a foundational member of our technical team, you’ll collaborate closely with our CTO to establish the core backend architecture, cloud infrastructure, and deployment strategies. Starting from a blank slate, this is a rare opportunity to shape the entire technical direction of our platform and support the company’s growth.

As the Lead Backend Engineer, you will have deep expertise in cloud-based technologies; you will contribute to high-level architecture decisions, lead the development of a fully automated, scalable solution, and define the deployment strategy. Experience in data engineering will also be highly valuable as we build data pipelines to handle loan-and portfolio- related data efficiently and securely, enabling the business to build vital data insights.This role is remote, but occasional travel will be expected to both Manchester and London.


Key Responsibilities:

  • Technical Leadership:Act as the technical lead for backend engineering, setting standards, conducting code reviews, and mentoring other developers to uphold best practices and drive a culture of excellence.
  • Architectural Design on AWS: Lead high-level backend architecture using AWS services for optimal scalability, security, and performance, including database design, API structuring, and third-party integrations.
  • Prototype and MVP Development:Design and implement early prototypes and MVP solutions on AWS, laying the groundwork for our platform's core features.
  • Data Engineering Support:Collaborate on data architecture, designing efficient data pipelines, ETL processes, and storage solutions.
  • Cloud Hosting & Deployment Strategy:Design and implement deployment strategies with AWS services, including CodePipeline, Elastic Beanstalk, ECS, and Lambda, to ensure reliable and scalable deployment pipelines.
  • Backend Development & Operations:Lead backend development, implementing core functionality with a focus on reliability, maintainability, and security.
  • Cross-Functional Collaboration:Work closely with the CTO and other stakeholders to align technical decisions with business objectives, ensuring the platform meets the company’s strategic goals.


You Should Apply If:

  • Experience:5+ years in backend development with at least 2 years in a senior engineering role. Experience in fintech or financial services is essential.
  • Technical Skills:Advanced proficiency in one or more backend languages (e.g., Python, Java, or Node.js) and significant experience with core AWS services such as Lambda, EC2, S3, and RDS.
  • AWS Microservices & API Design:Expertise in designing and deploying microservices and APIs using AWS (API Gateway, Lambda, and ECS), ensuring secure, efficient, and scalable interactions.
  • High-Level Architecture on AWS:Demonstrated experience in building high-availability, fault-tolerant systems on AWS, with a strong focus on security, compliance, and scalability.
  • Problem Solving:Strong analytical skills with a proven ability to design solutions for complex technical problems.
  • Leadership & Collaboration:Excellent communication skills to collaborate effectively with both technical and non-technical team members, providing mentorship to junior engineers.


Bonus Skills

  • Familiaritywith AWS DevOps tools (CodePipeline, CodeBuild, CodeDeploy), container orchestration (ECS, ECR), and infrastructure as code (AWS CloudFormation, Terraform).
  • Familiarity with event-driven architectures and real-time data processing on AWS (SNS, SQS, Kinesis).
  • Knowledge of data security and regulatory compliance requirements in fintech, including AWS IAM and AWS Shield.
  • Understanding of data engineering principles, as well as ETL processes and data storage best practices.
  • Experience with advanced data processing tools like Amazon EMR or machine learning services such as SageMaker.


What’s In It For You:

Competitive Salary:£80k-£100k per year (negotiable, dependent on experience and location).

Equity Opportunity:Share options in a fast-growing fintech.

Performance Bonuses:Transparent milestone-based team bonuses.

Career Growth:An incredible learning journey with opportunities to make a real impact on the future of financial services.

Ownership & Responsibility:Take charge and lead in a meaningful way.

Collaborative Culture:Work with highly ambitious and focused colleagues.

Generous Leave:30 days annual leave plus bank holidays.


How to Apply:

If you’re excited about joining an early-stage fintech startup and leading the backend development of a new platform, we’d love to hear from you. Send us your CV, GitHub profile, and a short note on why you’re interested in this role.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.