Lead Backend Engineer

Firenze
Manchester
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer - GFT Halifax

Senior Machine Learning Engineer

Senior Data Engineer x1/ Data Engineer x1 (Financial Services)

Lead Software Engineer - MLOps

Lead Data Engineer

Lead Data Engineer

Are you a backend engineer withAWS experienceand a deep understanding ofmicroservices architecture? Are you ready to bring your expertise to a dynamic, high-potential fintech venture? If you're passionate about building highly scalable, secure, reliable and well–architected backend solutions, and making a tangible impact, this is your opportunity to join us as our Lead Backend Engineer


About Us:

We’re one of the mostexciting new fintech companies in the UK.Firenze is fast emerging as the leading Lombard lending offering in the market due to our unique approach and development ofa cutting-edge platform. We’re on a mission to unlock access to one of the last remaining solutions that’s only available to the wealthy through private banks. We’rebringing lending secured against your investmentsto the masses. 

Led by a successful second time founder and a team of leading experts across technology and finance, Firenze is backed by some of the world’s most prominent investors. These include many of the UK’s top fintech angels and the scout funds of tier one VCs.


Role Overview:

As a foundational member of our technical team, you’ll collaborate closely with our CTO to establish the core backend architecture, cloud infrastructure, and deployment strategies. Starting from a blank slate, this is a rare opportunity to shape the entire technical direction of our platform and support the company’s growth.

As the Lead Backend Engineer, you will have deep expertise in cloud-based technologies; you will contribute to high-level architecture decisions, lead the development of a fully automated, scalable solution, and define the deployment strategy. Experience in data engineering will also be highly valuable as we build data pipelines to handle loan-and portfolio- related data efficiently and securely, enabling the business to build vital data insights.This role is remote, but occasional travel will be expected to both Manchester and London.


Key Responsibilities:

  • Technical Leadership:Act as the technical lead for backend engineering, setting standards, conducting code reviews, and mentoring other developers to uphold best practices and drive a culture of excellence.
  • Architectural Design on AWS: Lead high-level backend architecture using AWS services for optimal scalability, security, and performance, including database design, API structuring, and third-party integrations.
  • Prototype and MVP Development:Design and implement early prototypes and MVP solutions on AWS, laying the groundwork for our platform's core features.
  • Data Engineering Support:Collaborate on data architecture, designing efficient data pipelines, ETL processes, and storage solutions.
  • Cloud Hosting & Deployment Strategy:Design and implement deployment strategies with AWS services, including CodePipeline, Elastic Beanstalk, ECS, and Lambda, to ensure reliable and scalable deployment pipelines.
  • Backend Development & Operations:Lead backend development, implementing core functionality with a focus on reliability, maintainability, and security.
  • Cross-Functional Collaboration:Work closely with the CTO and other stakeholders to align technical decisions with business objectives, ensuring the platform meets the company’s strategic goals.


You Should Apply If:

  • Experience:5+ years in backend development with at least 2 years in a senior engineering role. Experience in fintech or financial services is essential.
  • Technical Skills:Advanced proficiency in one or more backend languages (e.g., Python, Java, or Node.js) and significant experience with core AWS services such as Lambda, EC2, S3, and RDS.
  • AWS Microservices & API Design:Expertise in designing and deploying microservices and APIs using AWS (API Gateway, Lambda, and ECS), ensuring secure, efficient, and scalable interactions.
  • High-Level Architecture on AWS:Demonstrated experience in building high-availability, fault-tolerant systems on AWS, with a strong focus on security, compliance, and scalability.
  • Problem Solving:Strong analytical skills with a proven ability to design solutions for complex technical problems.
  • Leadership & Collaboration:Excellent communication skills to collaborate effectively with both technical and non-technical team members, providing mentorship to junior engineers.


Bonus Skills

  • Familiaritywith AWS DevOps tools (CodePipeline, CodeBuild, CodeDeploy), container orchestration (ECS, ECR), and infrastructure as code (AWS CloudFormation, Terraform).
  • Familiarity with event-driven architectures and real-time data processing on AWS (SNS, SQS, Kinesis).
  • Knowledge of data security and regulatory compliance requirements in fintech, including AWS IAM and AWS Shield.
  • Understanding of data engineering principles, as well as ETL processes and data storage best practices.
  • Experience with advanced data processing tools like Amazon EMR or machine learning services such as SageMaker.


What’s In It For You:

Competitive Salary:£80k-£100k per year (negotiable, dependent on experience and location).

Equity Opportunity:Share options in a fast-growing fintech.

Performance Bonuses:Transparent milestone-based team bonuses.

Career Growth:An incredible learning journey with opportunities to make a real impact on the future of financial services.

Ownership & Responsibility:Take charge and lead in a meaningful way.

Collaborative Culture:Work with highly ambitious and focused colleagues.

Generous Leave:30 days annual leave plus bank holidays.


How to Apply:

If you’re excited about joining an early-stage fintech startup and leading the backend development of a new platform, we’d love to hear from you. Send us your CV, GitHub profile, and a short note on why you’re interested in this role.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.