Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Head of Product (AI)

Finatal
London
9 months ago
Applications closed

Related Jobs

View all jobs

Head of Product (advanced analytics & machine learning)

Data Engineer

Data Scientist

Data Scientist

Data Scientist

Head of Data Engineering

Job Title: Head of Product (AI)

Reports To: CEO/Chief Product Officer


DW005


Role Overview:

As the Head of Product (AI), you will be responsible for shaping and executing the AI product strategy to drive value across our business. You will lead cross-functional teams in product development, work closely with key stakeholders across the business, and manage a growing AI product portfolio. You will ensure that AI initiatives are aligned with the company’s strategic goals, drive operational efficiencies, and foster innovation to deliver breakthrough solutions that have a measurable impact.


Key Responsibilities:

AI Product Strategy & Vision:

  • Lead the AI product strategy, defining clear product roadmaps, aligning AI initiatives with the company’s overall business goals, and identifying market opportunities for AI-driven products and services.

Product Development & Lifecycle Management:

  • Oversee the end-to-end lifecycle of AI products, from concept to launch, and ensure successful integration with existing business operations. Manage the iterative process of product innovation, balancing short-term and long-term goals.

Cross-functional Collaboration:

  • Collaborate with key stakeholders, including senior leadership, engineering, data science, marketing, and sales teams, to ensure alignment and successful execution of AI product initiatives.

Customer-Centric Innovation:

  • Develop a deep understanding of customer needs, behaviors, and pain points to ensure AI products address real-world problems, are user-centric, and deliver measurable value to the business.

Team Leadership & Development:

  • Build and lead a high-performing product team, including AI specialists, product managers, and technical staff. Mentor and develop talent within the team and foster a culture of innovation, collaboration, and accountability.

Metrics & KPIs:

  • Define and track key performance indicators (KPIs) to measure the success of AI products, ensuring that AI-driven solutions are aligned with business outcomes such as revenue growth, cost savings, customer satisfaction, and retention.

Private Equity Partnership:

  • Work closely with private equity stakeholders to provide updates on AI product development, investment plans, and market trends. Communicate the value and strategic impact of AI initiatives to investors and help secure future funding to expand product offerings.

Market Research & Competitive Analysis:

  • Stay up-to-date with emerging AI technologies, industry trends, and competitive landscape to maintain the company’s leadership in AI innovation.


Qualifications:

Experience:

  • 7+ years of experience in product management, with a strong focus on AI or data-driven products in a fast-paced, high-growth environment.
  • Proven track record of successfully leading AI product teams, developing AI solutions, and bringing them to market in a private equity-backed or tech-driven company.
  • Strong experience working with private equity or venture capital stakeholders and understanding the dynamics of growing a business through investment.

Education:

  • Bachelor’s degree in Computer Science, Engineering, Data Science, Business, or a related field. MBA or advanced degree preferred.


Skills & Expertise:

  • Deep understanding of AI technologies, including machine learning, deep learning, natural language processing, and data analytics.
  • Proven ability to translate complex technical concepts into clear business strategies and product roadmaps.
  • Strong leadership, interpersonal, and communication skills with the ability to inspire and influence across all levels of the organization.
  • Excellent analytical and problem-solving skills, with a focus on data-driven decision-making.
  • Familiarity with Agile product development methodologies.

Leadership:

  • A visionary leader who can manage multiple stakeholders, inspire teams, and influence the overall direction of AI strategy within the company.
  • Strong business acumen, capable of balancing product goals with financial, operational, and customer objectives.

Private Equity/Investment Experience:

  • Prior experience working with private equity-backed organizations and an understanding of how to drive value creation within a portfolio company.
  • Comfort with managing high-level strategic discussions with investors and aligning product initiatives to broader business objectives.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.