Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Finance Data Engineer

Qh4 Consulting
London
9 months ago
Applications closed

Related Jobs

View all jobs

Finance Data Engineer London

Data Engineer (FSDF Functional)

Senior Data Engineer

Senior Data Engineer x2

Senior Data Engineer

Junior Data Engineer - Financial Data Platform

Data Engineer – Finance Analytics Technology


We are looking for a dedicatedData Engineerto join the Finance Analytics Technology team. In this role, you’ll play a key part in building, maintaining, and optimising a modern data ecosystem. This permanent opportunity involves working with leading technologies, includingSnowflake, Python, Informatica, andAzure, to deliver high-quality data solutions that support business-critical decision-making.


With ahybrid working modeland three days a week in the office, this role provides the chance to collaborate closely with cross-functional teams in a dynamic and supportive environment.]


Key Responsibilities:


  • Design, build, and optimise scalable data pipelines usingETLandELTmethodologies.
  • UtiliseSnowflakefor efficient data storage, processing, and analytics.
  • Automate data processes and integrate data from multiple sources usingPythonandSQL.
  • LeverageAzure cloud-native technologiesto enhance data infrastructure, ensuring scalability, performance, and security.
  • Collaborate with data analysts, BI developers, and enterprise data teams to align solutions with business requirements and maintain data governance standards.
  • Apply domain knowledge in finance-related data to improve accuracy, enhance models, and meet business needs.
  • Stay informed about developments in cloud and data technologies, contributing to the organisation’s data strategy.
  • Participate fully in the agile development lifecycle, including sprint planning, design reviews, and delivering data tasks within two-week cycles.
  • Ensure compliance with existing standards while contributing to the refinement of best practices in cloud data engineering.


Essential Skills


  • Expertise in building data pipelines and architectures withSnowflake, Python, andInformatica.
  • Familiarity withAzureand other cloud-native technologies.
  • Strong understanding of finance-related data domains and their application in data engineering.
  • Problem-solving ability, combined with excellent collaboration and communication skills, to work effectively with technical and non-technical teams.
  • Experience working within modern technology stacks and agile methodologies.
  • Background in collaborating with geographically distributed development teams.


Desirable Skills

  • Knowledge of reporting tools such asPower BI.
  • Familiarity withSAP FI datasetsor platforms likeSAP BW, SAP Analysis, andBusiness Objects.


This is an exciting opportunity to contribute to meaningful data-driven initiatives, working with a forward-thinking team on innovative projects. If this sounds like your next step, we’d love to hear from you!

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.