National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist - Synthetic Data Team

Ipsos
8 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist - Biomarkers - Remote - Outside IR35

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

Data Scientist - Synthetic Data Team 

Who We Are

Ipsos is one of the world’s largest research companies and currently the only one primarily managed by researchers, ranking as a #1 full-service research organization for four consecutive years. With over 75 different data-driven solutions, and presence in 90 markets, Ipsos brings together research, implementation, methodological, and subject-matter experts from around the world, combining thematic and technical experts to deliver top-quality research and insights. Simply speaking, we help the biggest companies solve some of their biggest problems, serving more than 5000 clients across the globe by providing research, data, and insights on their target markets.

Role Overview:

As a Data Scientist on the Synthetic Data Team at Ipsos, you will play a crucial role in advancing our capabilities in leveraging synthetic data for market research. You will collaborate with a talented team of data scientists and engineers to explore use cases, validate methodologies, and develop innovative solutions that harness the potential of synthetic data to enhance our research offerings.

Impact of Role:

Your work will have a significant impact on shaping the future of market research at Ipsos. By pioneering the use of synthetic data, you will contribute to the development of more efficient, cost-effective, and privacy-preserving research methods. Your insights and solutions will empower our clients to make data-driven decisions with greater confidence and agility.

What you will be doing:

Design, implement, and evaluate synthetic data generation algorithms and models, either proprietary, prebuilt or third-party, including Generative Adversarial Networks (GANs) and other generative AI techniques. Test and validate the effectiveness of synthetic data in replicating the statistical properties and patterns of real-world data while ensuring privacy standards are met. Collaborate with cross-functional teams to identify and prioritise use cases for synthetic data in areas such as market research, customer insights, and predictive analytics. Develop and test synthetic data use cases, exploring innovative applications and improving data quality and utility for various analytical purposes. Set up metrics and frameworks to assess the quality, diversity, and utility of synthetic data generated, ensuring it meets the required standards for different use cases Stay abreast of latest advancements and research in generative AI & synthetic data techniques. Conduct research and experiments to push the boundaries of Ipsos' synthetic data capabilities. Work closely with data engineers, analysts, and other stakeholders to integrate synthetic data solutions into projects, teams and Service Lines  Communicate complex technical concepts and findings effectively to less technical stakeholders, providing insights and recommendations based on synthetic data analyses. Document methodologies, processes, and findings to ensure transparency and reproducibility of synthetic data projects. Share knowledge and best practices within the team and across the organisation, contributing to training sessions and internal seminars.

You're the right person, if…

You have a PhD or a Master’s in a quantitative field such as Statistics, Mathematics, Computer Science, or a related discipline You have a solid foundation in statistical analysis, data mining, and machine learning, with experience applying these skills to real-world datasets. You are proficient in Python and have experience with data science libraries like pandas, scikit-learn, and TensorFlow or PyTorch You have a deep understanding of generative models, such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs) and other techniques used for synthetic data generation such as SMOTE You are knowledgeable about the ethical considerations and best practices in generating synthetic data, including privacy preservation and data security. You possess strong problem-solving skills and can develop innovative solutions to complex data challenges, particularly in the context of synthetic data use cases You have a curious mindset, always looking to explore new methodologies, tools, and applications in the field You are familiar with data visualisation tools (., Matplotlib, Seaborn, or Tableau) and can effectively present data insights and findings You have experience with big data technologies and cloud platforms (., AWS, Google Cloud, Azure) and can work with large-scale datasets You have a good understanding of data privacy regulations and best practices, ensuring that synthetic data projects comply with legal and ethical standards You enjoy working in a collaborative environment, partnering with data engineers, analysts, and other team members to integrate and apply synthetic data solutions. You are an effective communicator who can clearly articulate complex concepts and findings to both technical and non-technical stakeholders

If you don’t meet 100% of the requirements, we encourage all who feel they might be a fit for the opportunity to apply. 


What’s in it for you:

At Ipsos you’ll experience opportunities for Career Development, an exceptional benefits package (including generous annual leave/paid time off, healthcare plans, wellness benefits), a flexible workplace policy, and a strong collaborative culture.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.