Data Scientist

London
3 weeks ago
Create job alert

Data Scientist / Machine Learning Engineer

Join our team as a Data Scientist / Machine Learning expert in the Analytics department within the business services industry. This permanent position, based in London, offers an opportunity to apply advanced data science techniques to deliver actionable insights.

Client Details

Data Scientist / Machine Learning Engineer

Our client is a well-established organisation within the business services industry. They are a medium-sized entity with a commitment to innovation and excellence in their field, providing a supportive environment for professional growth.

Description

Data Scientist / Machine Learning Engineer

Develop and implement machine learning models to analyse complex data sets.
Collaborate with cross-functional teams to identify business challenges and provide data-driven solutions.
Optimise data pipelines and workflows for improved efficiency.
Translate analytical findings into clear insights and recommendations for stakeholders.
Stay updated on the latest advancements in data science and machine learning methodologies.
Create and maintain detailed documentation of data models and processes.
Conduct exploratory data analysis to uncover trends and patterns.
Ensure data quality and integrity throughout all analytics processes.Profile

Data Scientist / Machine Learning Engineer

A successful Data Scientist / Machine Learning expert should have:

A strong academic background in data science, computer science, mathematics, or a related field.
Hands-on experience with AWS ML stack (SageMaker, Lambda, Redshift).
Proven ability to design and implement machine learning algorithms and models.
Proficiency in Python, SQL, and ML libraries (e.g., scikit-learn, XGBoost, PyTorch, TensorFlow).
Strong data analysis, statistical modelling, and experimentation skills.
Experience with data visualisation tools and techniques.
Proficiency in programming languages such as Python, R, or similar.
Knowledge of data processing frameworks and platforms.
Attention to detail and a methodical approach to problem-solving.Job Offer

Data Scientist / Machine Learning Engineer

Competitive salary ranging from £60,000 to £69,000 per annum.
Comprehensive standard benefits package.
Opportunity to work in the thriving business services industry.
Located in the heart of London with excellent transport links.
Permanent role with opportunities for professional growth and development.If you are ready to take the next step in your career as a Data Scientist / Machine Learning specialist, we encourage you to apply now

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.