National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist Lead - Employee Platforms

JPMorgan Chase & Co.
London
1 month ago
Create job alert

Revolutionize the future of Employee Platforms with cutting-edge AI and Data Science! Join a dynamic team dedicated to creating innovative, cloud-centric solutions that transform client experiences and drive industry-leading advancements.


As a Data Scientist Lead in Employee Platforms, you will collaborate with a team of innovators to develop AI/ML solutions. Your work will directly impact our ability to provide exceptional service to clients by delivering cutting-edge technology solutions. Each day, you will engage in end-to-end software development, from design to deployment, in a fast-paced, cloud-native environment that values continuous learning and innovation. Your contributions will help keep our Employee Compute services at the forefront of the industry.

Job responsibilities

Develop and deploy machine learning models and generative AI capabilities. Design, code, test, and debug applications. Collaborate with cross-functional teams to achieve common goals. Keep stakeholders informed on development progress and benefits. Manage project lifecycle and software development deliverables. Solve complex problems and handle ambiguity with strong analytical skills.

Required qualifications, capabilities, and skills

Bachelors or Masters in Computer Science or related field Strong programming skills in python and knowledge of software engineering best practices Strong knowledge of basic data science libraries in Python (NumPy, pandas, scikit-learn, pyspark) Strong knowledge of the main deep-learning frameworks such as PyTorch, TensorFlow, Keras Experience with Linux and shell scripting and experience with LaTeX Solid understanding of traditional data science techniques and experience with data engineer pipelines for big data Solid knowledge of RNNs, and LSTMs models 

Preferred qualifications, capabilities, and skills

Experience with cloud-native development and deployment- Knowledge of AWS cloud services is a plus. Familiarity with project lifecycle and version control practices. Experience with machine learning algorithms on graphs. Strong ability to collaborate in a diverse, global team environment.

Related Jobs

View all jobs

Data Scientist Lead - Employee Platforms

Data Scientist - eDV Cleared

Data Scientist

Data Scientist

Data Scientist

Principal Data Scientist - AI

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.