National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist Lead - Employee Platforms

JPMorgan Chase & Co.
London
2 months ago
Applications closed

Related Jobs

View all jobs

Senior Manager - Data Science and Engineering Team

Principal Data Scientist - AI

Data Science Lead

Senior Data Scientist

Lead Data Scientist - Applied Intelligence

Lead Data Scientist

Revolutionize the future of Employee Platforms with cutting-edge AI and Data Science! Join a dynamic team dedicated to creating innovative, cloud-centric solutions that transform client experiences and drive industry-leading advancements.


As a Data Scientist Lead in Employee Platforms, you will collaborate with a team of innovators to develop AI/ML solutions. Your work will directly impact our ability to provide exceptional service to clients by delivering cutting-edge technology solutions. Each day, you will engage in end-to-end software development, from design to deployment, in a fast-paced, cloud-native environment that values continuous learning and innovation. Your contributions will help keep our Employee Compute services at the forefront of the industry.

Job responsibilities

Develop and deploy machine learning models and generative AI capabilities. Design, code, test, and debug applications. Collaborate with cross-functional teams to achieve common goals. Keep stakeholders informed on development progress and benefits. Manage project lifecycle and software development deliverables. Solve complex problems and handle ambiguity with strong analytical skills.

Required qualifications, capabilities, and skills

Bachelors or Masters in Computer Science or related field Strong programming skills in python and knowledge of software engineering best practices Strong knowledge of basic data science libraries in Python (NumPy, pandas, scikit-learn, pyspark) Strong knowledge of the main deep-learning frameworks such as PyTorch, TensorFlow, Keras Experience with Linux and shell scripting and experience with LaTeX Solid understanding of traditional data science techniques and experience with data engineer pipelines for big data Solid knowledge of RNNs, and LSTMs models 

Preferred qualifications, capabilities, and skills

Experience with cloud-native development and deployment- Knowledge of AWS cloud services is a plus. Familiarity with project lifecycle and version control practices. Experience with machine learning algorithms on graphs. Strong ability to collaborate in a diverse, global team environment.
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.