Data Scientist - CLTV

iwoca Ltd
London
2 weeks ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist (eDV clearance required)

Data Scientist - Customer Lifetime Value

Hybrid in London / Remote within the UK

Were looking for a Data Scientist

Our Customer Lifetime Value (CLtV) model is a highly developed and tailored model, which is central to our business strategy at iwoca. As a Data Scientist in our CLtV team, you will be developing this model so that it represents and codifies our best and most current understanding about the true lifetime value of our customers.

The company

Fast, flexible finance empowers small businesses to manage their cash flow better and seize opportunities - making their business and the economy stronger as a whole. At iwoca, we do just that. We help businesses get the funds they need, when they need it, often within minutes. Weve already made several billion in funding available to more than 100,000 businesses since we launched in 2012, and positioned ourselves as a leading Fintech in Europe.

Our mission is to finance one million businesses. Well get there by continuing to make our finance ever more relevant and accessible to more businesses by combining cutting-edge technology, data science, and a 5-star customer service.

The team

Customer Lifetime Value (CLtV) represents the value each customer brings to iwoca. This concept is central to our business, influencing decisions across every department.

The CLtV team is a small and versatile group of people who manage the CLtV model from the R&D stage all the way to deploying model releases into production. We manage data pipelines that enable the business to use our predictions in their day-to-day decision-making.

Our dynamic and autonomous environment emphasises on getting things done and delivering high quality solutions. You can expect working closely with stakeholders, delivering solutions iteratively to incrementally add value, collecting and addressing feedback, and also providing support to the team and wider business.

The role

Your role as a Data Scientist in the CLTV team will involve growing and demonstrating your skills in several key areas, including but not limited to:

  1. Model development.
    1. Explore and integrate innovative modelling methods into our training pipeline to enhance the predictive power and flexibility of our model.
    2. Take responsibility for the full lifecycle of the model, including training, validation, deployment, and performance monitoring.
    3. Clearly communicate and explain any model changes to the business, ensuring transparency and fostering trust in the models predictions.
    4. Collaborate with Data Scientists and Analysts in other teams to ensure that our model predictions are appropriately utilised and interdependencies are accounted for.
  2. Model-driven insights.
    1. Utilise our modelling and analytics tools (and introduce new ones where appropriate) to uncover insights, such as customer behaviour patterns or the efficacy of new modelling techniques.
    2. Effectively communicate these insights with the broader business to drive value by changing the way iwoca operates.
  3. Project ownership and autonomy.
    1. Independently develop data science solutions to address iwocas business challenges, with increasing responsibility in solution design.
    2. Maintain strong communications with stakeholders throughout your work to ensure that your solutions are pragmatically solving the business problem at hand and to get technical feedback for personal growth.

The function

iwocas Data Scientists specialise in Supervised Machine Learning, Statistical Inference and Exploratory Statistics, focusing on tabular and time series data. Our work emphasises quantitative predictions through the analysis of conditional probabilities and expectations, using medium-sized datasets.

The requirements

Essential:

  1. Ability to effectively communicate with stakeholders and downstream users of the model, and to maintain up-to-date and reliable documentation.
  2. Strong problem-solving skills in probability and statistics.
  3. Experience developing code collaboratively and implementing solutions in a production environment.
  4. Proficiency with data manipulation and modelling tools - e.g., pandas, statsmodels, R.
  5. Experience with scientific computing and tooling - e.g., NumPy, SciPy, Matlab, etc.
  6. Self-driven with the capability to efficiently manage projects end-to-end.
  7. Experience working on research projects, particularly those involving mathematical, statistical, or analytical modelling.

Bonus:

  1. Experience building machine learning models from scratch (e.g., built your own optimiser).
  2. Excellent knowledge of stochastic processes and related mathematical techniques.
  3. Experience with Bayesian analysis.
  4. Experience with Python. (Note: we mostly work in Python.)
  5. Knowledge of financial concepts (e.g. calculations with deterministic cash flows).

The salary

We expect to pay from £70,000 - £90,000 for this role. But, were open-minded, so definitely include your salary goals with your application. We routinely benchmark salaries against market rates, and run quarterly performance and salary reviews.

The culture

At iwoca, we prioritise a culture of learning, growth, and support, and invest in the professional development of our team members. We value thought and skill diversity, and encourage you to explore new areas of interest to help us innovate and improve our products and services.

The offices

We put a lot of effort into making iwoca a brilliant place to work:

  1. Offices in London, Leeds, and Frankfurt with plenty of drinks and snacks.
  2. Events and clubs, like bingo, comedy nights, yoga classes, football, etc.

The benefits

  1. Medical insurance from Vitality, including discounted gym membership.
  2. A private GP service (separate from Vitality) for you, your partner, and your dependents.
  3. 25 days holiday, an extra day off for your birthday, the option to buy or sell an additional five days of annual leave, and unlimited unpaid leave.
  4. A one-month, fully paid sabbatical after four years.
  5. Instant access to external counselling and therapy sessions for team members that need emotional or mental health support.
  6. 3% pension contributions on total earnings.
  7. An employee equity incentive scheme.
  8. Generous parental leave and a nursery tax benefit scheme to help you save money.
  9. Electric car scheme and cycle to work scheme.
  10. Two company retreats a year, weve been to France, Italy, Spain, and further afield.

And to make sure we all keep learning, we offer:

  1. A learning and development budget for everyone.
  2. Company-wide talks with internal and external speakers.
  3. Access to learning platforms like Treehouse.

J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.