Data Scientist - CLTV

iwoca Ltd
London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist - London

Data Scientist | London | AI-Powered SaaS Company

Data Scientist - Customer Lifetime Value

Hybrid in London / Remote within the UK

Were looking for a Data Scientist

Our Customer Lifetime Value (CLtV) model is a highly developed and tailored model, which is central to our business strategy at iwoca. As a Data Scientist in our CLtV team, you will be developing this model so that it represents and codifies our best and most current understanding about the true lifetime value of our customers.

The company

Fast, flexible finance empowers small businesses to manage their cash flow better and seize opportunities - making their business and the economy stronger as a whole. At iwoca, we do just that. We help businesses get the funds they need, when they need it, often within minutes. Weve already made several billion in funding available to more than 100,000 businesses since we launched in 2012, and positioned ourselves as a leading Fintech in Europe.

Our mission is to finance one million businesses. Well get there by continuing to make our finance ever more relevant and accessible to more businesses by combining cutting-edge technology, data science, and a 5-star customer service.

The team

Customer Lifetime Value (CLtV) represents the value each customer brings to iwoca. This concept is central to our business, influencing decisions across every department.

The CLtV team is a small and versatile group of people who manage the CLtV model from the R&D stage all the way to deploying model releases into production. We manage data pipelines that enable the business to use our predictions in their day-to-day decision-making.

Our dynamic and autonomous environment emphasises on getting things done and delivering high quality solutions. You can expect working closely with stakeholders, delivering solutions iteratively to incrementally add value, collecting and addressing feedback, and also providing support to the team and wider business.

The role

Your role as a Data Scientist in the CLTV team will involve growing and demonstrating your skills in several key areas, including but not limited to:

  1. Model development.
    1. Explore and integrate innovative modelling methods into our training pipeline to enhance the predictive power and flexibility of our model.
    2. Take responsibility for the full lifecycle of the model, including training, validation, deployment, and performance monitoring.
    3. Clearly communicate and explain any model changes to the business, ensuring transparency and fostering trust in the models predictions.
    4. Collaborate with Data Scientists and Analysts in other teams to ensure that our model predictions are appropriately utilised and interdependencies are accounted for.
  2. Model-driven insights.
    1. Utilise our modelling and analytics tools (and introduce new ones where appropriate) to uncover insights, such as customer behaviour patterns or the efficacy of new modelling techniques.
    2. Effectively communicate these insights with the broader business to drive value by changing the way iwoca operates.
  3. Project ownership and autonomy.
    1. Independently develop data science solutions to address iwocas business challenges, with increasing responsibility in solution design.
    2. Maintain strong communications with stakeholders throughout your work to ensure that your solutions are pragmatically solving the business problem at hand and to get technical feedback for personal growth.

The function

iwocas Data Scientists specialise in Supervised Machine Learning, Statistical Inference and Exploratory Statistics, focusing on tabular and time series data. Our work emphasises quantitative predictions through the analysis of conditional probabilities and expectations, using medium-sized datasets.

The requirements

Essential:

  1. Ability to effectively communicate with stakeholders and downstream users of the model, and to maintain up-to-date and reliable documentation.
  2. Strong problem-solving skills in probability and statistics.
  3. Experience developing code collaboratively and implementing solutions in a production environment.
  4. Proficiency with data manipulation and modelling tools - e.g., pandas, statsmodels, R.
  5. Experience with scientific computing and tooling - e.g., NumPy, SciPy, Matlab, etc.
  6. Self-driven with the capability to efficiently manage projects end-to-end.
  7. Experience working on research projects, particularly those involving mathematical, statistical, or analytical modelling.

Bonus:

  1. Experience building machine learning models from scratch (e.g., built your own optimiser).
  2. Excellent knowledge of stochastic processes and related mathematical techniques.
  3. Experience with Bayesian analysis.
  4. Experience with Python. (Note: we mostly work in Python.)
  5. Knowledge of financial concepts (e.g. calculations with deterministic cash flows).

The salary

We expect to pay from £70,000 - £90,000 for this role. But, were open-minded, so definitely include your salary goals with your application. We routinely benchmark salaries against market rates, and run quarterly performance and salary reviews.

The culture

At iwoca, we prioritise a culture of learning, growth, and support, and invest in the professional development of our team members. We value thought and skill diversity, and encourage you to explore new areas of interest to help us innovate and improve our products and services.

The offices

We put a lot of effort into making iwoca a brilliant place to work:

  1. Offices in London, Leeds, and Frankfurt with plenty of drinks and snacks.
  2. Events and clubs, like bingo, comedy nights, yoga classes, football, etc.

The benefits

  1. Medical insurance from Vitality, including discounted gym membership.
  2. A private GP service (separate from Vitality) for you, your partner, and your dependents.
  3. 25 days holiday, an extra day off for your birthday, the option to buy or sell an additional five days of annual leave, and unlimited unpaid leave.
  4. A one-month, fully paid sabbatical after four years.
  5. Instant access to external counselling and therapy sessions for team members that need emotional or mental health support.
  6. 3% pension contributions on total earnings.
  7. An employee equity incentive scheme.
  8. Generous parental leave and a nursery tax benefit scheme to help you save money.
  9. Electric car scheme and cycle to work scheme.
  10. Two company retreats a year, weve been to France, Italy, Spain, and further afield.

And to make sure we all keep learning, we offer:

  1. A learning and development budget for everyone.
  2. Company-wide talks with internal and external speakers.
  3. Access to learning platforms like Treehouse.

J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.