National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Science Manager

Harnham
Newport
1 week ago
Create job alert

Data Science Manager

Remote (UK-Based)

Up to £75,000


The Company

This UK-based start-up has achieved rapid growth in just two years, now boasting a team of ~40 people across divisions. Following a successful funding round and with a strong pipeline ahead, they continue to scale at pace.

They specialise inpredictive analyticsandKPI trackingacross a broad range of companies and industries. Their predictive insights empower hedge funds and investors with critical performance data, ahead of public earnings reports.


The Role

As aData Science Manager, you’ll take ownership of the end-to-end development of KPI prediction models and manage a team of data scientists, helping refine their workflows and ensure high-quality deliverables.

You will:

  • Lead and mentor a team of data scientists in building predictive models.
  • Oversee data cleaning, feature engineering, and model development pipelines.
  • Build and maintain robust, scalable linear regression and statistical models for KPI forecasting.
  • Drive improvements in internal tooling and API integrations.
  • Collaborate closely with leadership, engineering, and the revenue team to translate business needs into data science solutions.
  • Play a key role in product innovation, helping shape how new data products are designed and delivered.


What They're Looking For

  • 5+ years’ experiencein data science or a closely related field.
  • Proven leadership experience — mentoring or managing junior data scientists.
  • Expert Python programming skills (essential).
  • Strong grasp of linear regression, statistical modeling, and data processing best practices.
  • Proficient in SQL (MySQL preferred).
  • Experience with web scraping, machine learning techniques, and dashboarding tools is a bonus.
  • Familiarity with Docker, time series forecasting, or LLM technologies is advantageous.
  • A background or exposure to finance is useful but not mandatory.
  • Bachelor’s degree (or higher) in a quantitative or technical field.
  • Strong coding samples (e.g., GitHub projects).
  • Practical experience building production-level models and data pipelines.
  • Ability to bridge data science and product development goals.


If this role looks it could be of interest, please reach out to Joseph Gregory, or apply here.

Related Jobs

View all jobs

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.

The Ultimate Assessment-Centre Survival Guide for Machine Learning Jobs in the UK

Assessment centres for machine learning positions in the UK are designed to reflect the complexity and collaboration required in real-world ML projects. From psychometric assessments and live model-building tasks to group data science challenges and behavioural interviews, recruiters evaluate your statistical understanding, coding skills, communication and teamwork. Whether you specialise in deep learning, reinforcement learning or NLP, this guide offers a step-by-step approach to excel at every stage and secure your next ML role.