Data Science Manager

iO Associates - UK/EU
Liverpool
6 days ago
Create job alert

Data Science Manager / Up to £100,000 / Permanent / 2 days a week onsite

We are looking for aData Science Managerto join a growingData Science teamwithin a leading eCommerce organisation. This is an exciting opportunity to drive significant commercial value in a fast-paced environment.

This role will focus on optimising how we present content to customers-ensuring the right products are surfaced at the right time and through the right channels. We are looking for a highly skilled data scientist with a strong technical foundation and excellent communication skills, combined with a passion for applying data science to real-world commercial challenges.

This is a hybrid role, offering a mix of office and remote working. The company's main headquarters are based inLeicestershire, and we welcome applicants from across the UK.

About the Role

  • Collaborate with teams across the business to understand challenges and own the technical solutions, identifying further opportunities to deliver value.
  • Search optimisation - vector embedding of search terms and product items
  • Deep learning and regression modelling for product profitability forecasts
  • Work closely with data engineering and software development teams to define technical requirements and ensure timely delivery.
  • Analyse large volumes of data from various sources, including transactional, demographic, and online data, to build predictive models.
  • Apply machine learning techniques to personalise customer experiences and optimise content presentation.
  • Design and execute robust testing strategies to validate hypotheses and measure commercial impact.
  • Present insights and recommendations to senior stakeholders, including C-suite executives.
  • Proactively identify opportunities for personalisation and customer experience improvements.

About You

  • Strong expertise in a broad range ofdata science techniques, including regression, classification, and machine learning. Experience with deep learning or generative AI is a plus but not essential.
  • Proficiency in(Spark)SQL and Python. Experience with PySpark is beneficial but not required.
  • Experience designing and implementing robusttesting frameworks.
  • Strong analytical skills with keen attention to detail.
  • Excellent communication skills-comfortable presenting insights to a variety of audiences and crafting a compelling data-driven narrative.
  • Effective time management and ability toprioritise multiple projects.
  • Enthusiastic and eager to learn, with a collaborative yet self-sufficient working style.

This is an exciting opportunity to play a pivotal role in shapingdata-driven customer experiencesfor aleading eCommerce business. If you're passionate about data science and looking for a role where you can make a real commercial impact, we'd love to hear from you!

Related Jobs

View all jobs

Data Science Manager

Data Science Manager – Gen/AI & ML Projects - Bristol

Data Science Manager

Data Science Manager Gen/AI & ML Projects - Bristol

Data Science Manager

Data Science Manager

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.