National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Science Manager

Meta
London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

As a Data Science Manager at Meta, you will help shape the future of the experiences we build for billions of people and hundreds of millions of businesses, creators, and partners around the world. You will apply your people leadership, project management, analytical, and technical skills, creativity, and product intuition to one of the largest data sets in the world. You will collaborate on a wide array of product and business problems with a diverse set of cross-functional partners across Product, Engineering, Research, Data Engineering, Marketing, Sales, Finance and others. You will influence product strategy and investment decisions with data, be focused on impact, and lead and grow an impact-oriented team. By joining Meta, you will become part of the analytics community dedicated to skill development and career growth in analytics and beyond.

About the role:

Product leadership:You will use data to understand the product and business ecosystem, quantify new opportunities, identify upcoming challenges, and shape product development to bring value to people, businesses, and Meta. You will help develop strategy and support leadership in prioritizing what to build and setting goals for execution.

Analytics:You will guide product teams using data and insights. You will focus on developing hypotheses and employ a diverse toolkit of rigorous analytical approaches, different methodologies, frameworks, and technical approaches to test them.

Communication and influence:You won’t simply present data, but tell data-driven stories. You will convince and influence leaders using clear insights and recommendations. You will build credibility through structure and clarity and be a trusted strategic partner.

People leadership:You will inspire, lead and grow a team of data scientists and data science leaders.

Data Science Manager Responsibilities

  1. Lead a team of data scientists to develop strategies for our products that serve billions of people and hundreds of millions of businesses, creators, and partners around the world.
  2. Drive analytics projects end-to-end in partnership with Product, Engineering, and cross-functional teams to inform, influence, support, and execute product strategy and investment decisions.
  3. Influence product direction through clear and compelling presentations to leadership.
  4. Work with large and complex data sets to solve a wide array of challenging problems using different analytical and statistical approaches.
  5. Identify and measure success of product efforts through goal setting, forecasting, and monitoring of key product metrics to understand trends.
  6. Define, understand, and test opportunities and levers to improve the product, and drive roadmaps through your insights and recommendations.
  7. Contribute towards advancing the Data Science discipline at Meta, including but not limited to driving data best practices (e.g. analysis, goaling, experimentation), improving analytical processes, scaling knowledge and tools, and mentoring other data scientists.

Minimum Qualifications

  1. Currently has, or is in the process of obtaining, a Bachelor's degree or equivalent practical experience. Degree ideally should be completed before joining Meta.
  2. A minimum of 4 years of work experience (2+ years with a Ph.D.) in applied analytics, including a minimum of 2 years of experience managing analytics teams.
  3. Experience with data querying languages (e.g. SQL), scripting languages (e.g. Python), and/or statistical/mathematical software (e.g. R).
  4. Experience initiating and completing analytical projects with minimal guidance.
  5. Experience communicating results of analysis to leadership.

Preferred Qualifications

  1. Master’s or Ph.D. degree in Mathematics, Statistics, Computer Science, Engineering, Economics, or another quantitative field.
  2. Experience working in technology, consulting, or finance.
  3. Proven track record of leading impact-oriented analytics teams.

About Meta

Meta builds technologies that help people connect, find communities, and grow businesses. When Facebook launched in 2004, it changed the way people connect. Apps like Messenger, Instagram and WhatsApp further empowered billions around the world. Now, Meta is moving beyond 2D screens toward immersive experiences like augmented and virtual reality to help build the next evolution in social technology. People who choose to build their careers by building with us at Meta help shape a future that will take us beyond what digital connection makes possible today—beyond the constraints of screens, the limits of distance, and even the rules of physics.

Equal Employment Opportunity and Affirmative Action

Meta is proud to be an Equal Employment Opportunity and Affirmative Action employer. We do not discriminate based upon race, religion, color, national origin, sex (including pregnancy, childbirth, reproductive health decisions, or related medical conditions), sexual orientation, gender identity, gender expression, age, status as a protected veteran, status as an individual with a disability, genetic information, political views or activity, or other applicable legally protected characteristics.

Meta is committed to providing reasonable support (called accommodations) in our recruiting processes for candidates with disabilities, long term conditions, mental health conditions or sincerely held religious beliefs, or who are neurodivergent or require pregnancy-related support. If you need support, please reach out to .

Apply for this job. Take the first step toward a rewarding career at Meta.


#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.