Data Engineer

SF Technology Solutions
Leeds
1 month ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer Azure Stack | £60,000–£70,000| Leeds – Hybrid (2 days/week)


A leading professional services firm is looking for a hands-on Data Engineer to join them at a pivotal moment in their data journey. This is a unique opportunity to own and shape the development of a modern Azure-based data platform from the ground up — replacing legacy reporting tools, consolidating business-critical data sources, and paving the way for Microsoft Fabric adoption.


The organisation is mid-way through a modernisation programme. They’ve moved away from outdated SAP BO reports and started building a scalable data foundation using Azure Synapse, ADF, and Power BI, with support from a Microsoft partner. They are now looking for someone to take ownership of the platform and guide the business through the next phase of growth.


What You’ll Be Doing


  • Owning the end-to-end design and delivery of data pipelines using ADF and Synapse
  • Working with internal systems (finance, HR, case management) to extract, model, and prepare data for reporting
  • Collaborating closely with a small BI team, advising on how to shape clean, usable datasets for Power BI
  • Preparing for a move to Microsoft Fabric (training/support available)
  • Acting as a subject matter expert in data engineering, supporting and educating others along the way
  • Troubleshooting, managing exceptions, and advising on data quality, security, and integration best practices


What They’re Looking For


  • Strong SQL skills (essential) – you’ll need to pass a practical SQL assessment
  • Hands-on experience with the Azure data stack – ADF, Synapse, Azure SQL, Power BI
  • Comfortable working independently – this is a solo engineering role (for now), so autonomy is key
  • Good understanding of how to evaluate, connect, and transform new data sources
  • Curiosity and the ability to think through business problems — not just write code
  • Exposure to Microsoft Fabric is a bonus, but a willingness to learn and evolve is more important



  • Be the engineer – the go-to person for all things data platform
  • Shape how the business uses data from day one
  • Join a team that values learning, autonomy, and practical delivery
  • You'll be part of a wider roadmap that includes growth, a senior hire in future, and full Fabric migration
  • Culture that blends long-standing experience with modern thinking – change is already in motion
  • Hybrid working (2 days on-site in Leeds), benefits package, and supportive leadership

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Winning Cover Letter for Machine Learning Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for machine learning jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the machine learning sector. When applying for a machine learning job, your cover letter is a vital part of your application. Machine learning is an exciting and rapidly evolving field, and your cover letter offers the chance to demonstrate your technical expertise, passion for AI, and your ability to apply machine learning techniques to solve real-world problems. Writing a cover letter for machine learning roles may feel intimidating, but by following a clear structure, you can showcase your strengths effectively. Whether you're just entering the field, transitioning from another role, or looking to advance your career in machine learning, this article will guide you through a proven four-paragraph structure. We’ll provide practical tips and sample lines to help you create a compelling cover letter that catches the attention of hiring managers in the machine learning job market.

Veterans in Machine Learning: A Military‑to‑Civilian Pathway into AI Careers

Introduction Artificial intelligence is no longer relegated to sci‑fi films—it underpins battlefield decision‑support, fraud detection, and even supermarket logistics. The UK Government’s 2025 AI Sector Deal forecasts an additional £200 billion in GDP by 2030, with machine‑learning (ML) engineers cited as the nation’s second most in‑demand tech role (Tech Nation 2024). The Ministry of Defence’s Defence AI Strategy echoes that urgency, earmarking £1.6 billion for FY 2025–28 to embed ML into planning, logistics, and autonomous systems. If you have ever tuned a radar filter, plotted artillery trajectories, or sifted sensor data for actionable intel, you have already worked with statistical modelling—the backbone of machine learning. This guide shows UK veterans how to reframe military experience for ML roles, leverage MoD transition funding, and land high‑impact positions building the models shaping tomorrow’s defence and commercial landscapes. Quick Win: Bookmark our live board for Machine‑Learning Engineer roles to see who’s hiring today.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.